【连续介质力学】特征值和特征向量问题

特征值和特征向量问题

二阶张量和一个向量(单位向量 n ^ ′ \hat n' n^)的点积会得到一个向量,也就是说,将一个二阶张量投影到某个方向所得到的向量的方向实际上与 n ^ ′ \hat n' n^ 的方向不一样

特征值和特征向量问题的目标是找到一个方向 n ^ \hat n n^,与投影向量 t ⃗ n ^ = T ⋅ n ^ \vec t^{\hat n} = T \cdot \hat n t n^=Tn^的方向一致

在这里插入图片描述
n ^ \hat n n^是张量 T T T特征向量,如果存在一个标量 λ \lambda λ,即特征值,使得:
T ⋅ n ^ = λ n ^ T \cdot \hat n=\lambda \hat n Tn^=λn^

指标形式:
在这里插入图片描述

以上齐次方程只有非平凡解,例如: n ^ ≠ 0 \hat n \neq 0 n^=0 , 当且仅当:
det ⁡ ( T − λ 1 ) = 0 ; ∣ T i j − λ δ i j ∣ = 0 \det (T - \lambda 1)=0; \quad |T_{ij} - \lambda \delta_{ij}| = 0 det(Tλ1)=0;Tijλδij=0
以上称为张量的特征行列式,显式表示为:
在这里插入图片描述
展开行列式,得到特征多项式:
λ 3 − λ 2 I T + λ I I T − I I I T = 0 \lambda^3 - \lambda^2I_T +\lambda II_T - III_T=0 λ3λ2IT+λIITIIIT=0
其中, I t , I I T , I I I T I_t, II_T, III_T It,IIT,IIIT是张量T的不变量:
在这里插入图片描述
其中 M i i M_{ii} Mii是余子式矩阵的迹: M i i = M 11 + M 22 + M 33 M_{ii} = M_{11} + M_{22} + M_{33} Mii=M11+M22+M33
显式表示:

在这里插入图片描述

如果 T T T 是对称张量,主不变量如下:
在这里插入图片描述
通过求解特征多项式可以得到特征值,一旦得到特征值,可以应用以下等式求出特征向量:
( T i j − λ 1 δ i j ) n ^ j ( 1 ) = 0 i (T_{ij}-\lambda_1 \delta_{ij})\hat n_j^{(1)}=0_i (Tijλ1δij)n^j(1)=0i
( T i j − λ 2 δ i j ) n ^ j ( 2 ) = 0 i (T_{ij}-\lambda_2 \delta_{ij})\hat n_j^{(2)}=0_i (Tijλ2δij)n^j(2)=0i
( T i j − λ 3 δ i j ) n ^ j ( 3 ) = 0 i (T_{ij}-\lambda_3 \delta_{ij})\hat n_j^{(3)}=0_i (Tijλ3δij)n^j(3)=0i
这些特征向量构成了一个新空间,称为主空间

如果 T T T是一个对称张量,那么主空间由正交基定义且所有的特征值都是实数

如果三个特征值都互不相同 λ 1 ≠ λ 2 ≠ λ 3 \lambda_1 \neq \lambda_2 \neq \lambda_3 λ1=λ2=λ3,那么主方向是唯一的

如果其中有两个相等, λ 1 = λ 2 ≠ λ 3 \lambda_1 = \lambda_2 \neq \lambda_3 λ1=λ2=λ3,可以说明特征值 λ 3 \lambda_3 λ3的主方向 n ^ ( 3 ) \hat n^{(3)} n^(3)是唯一的,并且任何与 n ^ ( 3 ) \hat n^{(3)} n^(3)垂直的平面是主平面,正交性是确定 n ^ ( 1 ) \hat n^{(1)} n^(1) n ^ ( 2 ) \hat n^{(2)} n^(2)的唯一约束

如果 λ 1 = λ 2 = λ 3 \lambda_1 = \lambda_2 =\lambda_3 λ1=λ2=λ3,那么任何方向都是主方向

如果一个张量有3个相等特征值,那么这个张量称为球形张量

在主空间的张量分量只由主分量构成
在这里插入图片描述
所以,主不变量可以表示为:
I T = T 1 + T 2 + T 3 I_T = T_1 + T_2 + T_3 IT=T1+T2+T3
I I T = T 1 T 2 + T 2 T 3 + T 1 T 3 II_T = T_1T_2 + T_2T_3 + T_1T_3 IIT=T1T2+T2T3+T1T3
I I I T = T 1 T 2 T 3 III_T = T_1 T_2 T_3 IIIT=T1T2T3

如果 T T T是球形张量,有 T 1 = T 2 = T 3 = T , T_1=T_2 =T_3=T, T1=T2=T3=T那么主不变量为
I T 2 = 3 I I T I_T^2 = 3II_T IT2=3IIT
I I I T = T 3 III_T=T^3 IIIT=T3

如果 W W W 是一个反对称张量, W W W 的主不变量为

在这里插入图片描述
其中, w 2 = ∣ ∣ w ⃗ ∣ ∣ 2 = w ⃗ ⋅ w ⃗ = W 23 2 + W 13 2 + W 12 2 w^2 = ||\vec w||^2=\vec w \cdot \vec w = W_{23}^2+W_{13}^2+W_{12}^2 w2=∣∣w 2=w w =W232+W132+W122,然后,反对称张量的特征方程变为:
λ 3 − λ 2 I W + λ I I W − I I I W = 0    ⟹    λ 3 + w 2 λ = 0    ⟹    λ ( λ 2 + w 2 ) = 0 \lambda^3 - \lambda^2I_W+\lambda II_W-III_W=0 \implies \lambda^3 + w^2\lambda = 0 \implies \lambda(\lambda^2+w^2)=0 λ3λ2IW+λIIWIIIW=0λ3+w2λ=0λ(λ2+w2)=0

在这种情况,有一个特征值是实数0,而其他的特征值是虚根:
λ 2 + w 2 = 0    ⟹    λ 2 = − w 2 = 0    ⟹    λ ( 1 , 2 ) = ± w − 1 = ± w i \lambda^2 + w^2=0 \implies \lambda^2=-w^2 = 0 \implies \lambda_{(1, 2)}= \pm w\sqrt{-1}=\pm wi λ2+w2=0λ2=w2=0λ(1,2)=±w1 =±wi

特征向量的正交性

λ 1 , λ 2 , λ 3 \lambda_1, \lambda_2, \lambda_3 λ1,λ2,λ3是T的特征值,那么:
T ⋅ n ^ ( 1 ) = λ 1 n ^ ( 1 ) T\cdot \hat n^{(1)} = \lambda_1\hat n^{(1)} Tn^(1)=λ1n^(1)
T ⋅ n ^ ( 2 ) = λ 2 n ^ ( 2 ) T\cdot \hat n^{(2)} = \lambda_2\hat n^{(2)} Tn^(2)=λ2n^(2)
T ⋅ n ^ ( 3 ) = λ 3 n ^ ( 3 ) T\cdot \hat n^{(3)} = \lambda_3\hat n^{(3)} Tn^(3)=λ3n^(3)

n ^ ( 2 ) \hat n^{(2)} n^(2) T ⋅ n ^ ( 1 ) = λ 1 n ^ ( 1 ) T\cdot \hat n^{(1)} = \lambda_1\hat n^{(1)} Tn^(1)=λ1n^(1) 进行点积, 并且将 n ^ ( 1 ) \hat n^{(1)} n^(1) T ⋅ n ^ ( 2 ) = λ 2 n ^ ( 2 ) T\cdot \hat n^{(2)} = \lambda_2\hat n^{(2)} Tn^(2)=λ2n^(2) 进行点积:

n ^ 2 ⋅ T ⋅ n ^ ( 1 ) = λ 1 n ^ ( 2 ) ⋅ n ^ ( 1 ) n ^ 1 ⋅ T ⋅ n ^ ( 2 ) = λ 2 n ^ ( 1 ) ⋅ n ^ ( 2 ) \hat n^{2} \cdot T \cdot \hat n^{(1)} = \lambda_1 \hat n^{(2)} \cdot \hat n^{(1)} \\ \hat n^{1} \cdot T \cdot \hat n^{(2)} = \lambda_2 \hat n^{(1)} \cdot \hat n^{(2)} n^2Tn^(1)=λ1n^(2)n^(1)n^1Tn^(2)=λ2n^(1)n^(2)

由于 T T T 是对称的,所以 n ^ 2 ⋅ T ⋅ n ^ ( 1 ) = n ^ 1 ⋅ T ⋅ n ^ ( 2 ) \hat n^{2} \cdot T \cdot \hat n^{(1)} = \hat n^{1} \cdot T \cdot \hat n^{(2)} n^2Tn^(1)=n^1Tn^(2), 所以:
λ 1 n ^ ( 2 ) ⋅ n ^ ( 1 ) = λ 2 n ^ ( 1 ) ⋅ n ^ ( 2 ) = λ 2 n ^ ( 2 ) ⋅ n ^ ( 1 )    ⟹    ( λ 1 − λ 2 ) n ^ ( 1 ) ⋅ n ^ ( 2 ) = 0 \lambda_1 \hat n^{(2)} \cdot \hat n^{(1)} = \lambda_2 \hat n^{(1)} \cdot \hat n^{(2)} = \lambda_2 \hat n^{(2)} \cdot \hat n^{(1)} \\ \implies (\lambda_1 - \lambda_2)\hat n^{(1)} \cdot \hat n^{(2)} = 0 λ1n^(2)n^(1)=λ2n^(1)n^(2)=λ2n^(2)n^(1)(λ1λ2)n^(1)n^(2)=0
为了在 λ 1 ≠ λ 2 ≠ 0 \lambda_1 \neq \lambda_2 \neq 0 λ1=λ2=0情况下使上面等式成立,需要:
n ^ ( 1 ) ⋅ n ^ ( 2 ) = 0 \hat n^{(1)} \cdot \hat n^{(2)} =0 n^(1)n^(2)=0

同理,可得: n ^ ( 2 ) ⋅ n ^ ( 3 ) = 0 n ^ ( 1 ) ⋅ n ^ ( 3 ) = 0 \hat n^{(2)} \cdot \hat n^{(3)} =0\quad \hat n^{(1)} \cdot \hat n^{(3)} =0 n^(2)n^(3)=0n^(1)n^(3)=0,则可以下结论特征向量是正交的,且构成正交基,其中坐标系之间的变换矩阵是:
在这里插入图片描述

对角化
在这里插入图片描述

问题1.31 证明以下为不变量: C 1 2 + C 2 2 + C 3 2 C 1 3 + C 2 3 + C 3 3 C 1 4 + C 2 4 + C 3 4 C_1^2+C_2^2+C_3^2 \quad C_1^3+C_2^3+C_3^3 \quad C_1^4+C_2^4+C_3^4 C12+C22+C32C13+C23+C33C14+C24+C34,其中 C 1 , C 2 , C 3 C_1, C_2, C_3 C1,C2,C3是二阶张量 C C C 的特征值

在这里插入图片描述

问题1.32 Q是正交张量,E是任意二阶张量,证明:E的特征值不会影响以下正交变换: E ∗ = Q ⋅ E ⋅ Q T E^*=Q\cdot E \cdot Q^T E=QEQT

在这里插入图片描述
结论:任意张量经过正交变换不改变特征值

三次方程的解

T T T是对称二阶张量,其特征方程 λ 3 − λ 2 I T + λ I I T − I I I T = 0 \lambda^3 - \lambda^2I_T +\lambda II_T - III_T = 0 λ3λ2IT+λIITIIIT=0的根是都是实数,表示成:
在这里插入图片描述
其中:
在这里插入图片描述
矩阵形式:
在这里插入图片描述
其中,我们清楚地将张量在主空间分解为球部分和偏部分
注意到,当 T T T 是一个球形张量,满足: I T 2 = 3 I I T I_T^2 =3II_T IT2=3IIT, 因此 S = 0 S = 0 S=0

问题1.33 求T的主值和主方向

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
总结:张量的特征向量构成原坐标系 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3)到主空间 ( x 1 ′ , x 2 , ′ x 3 ′ ) (x_1', x_2,' x_3') (x1,x2,x3)的变换矩阵 A A A

参考教材:
Eduardo W.V. Chaves, Notes On Continuum Mechanics

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值