NumPy 基本操作(数组的基础索引与切片)

本文介绍了NumPy数组的基础索引与切片操作,包括一维和多维数组的索引方式。在NumPy中,数组切片是原数组的视图,对切片的修改会反映到原数组上。通过示例展示了如何进行一维和二维数组的切片,并强调了使用`copy()`来获取切片副本的重要性。
摘要由CSDN通过智能技术生成

                                                        数组的基础索引与切片

一、多维数组的索引

    numpy 数组索引是一个大话题,有很多种方式可以让你选中数据的子集或某个单个元素。一维数组比较简单,看起来和 python 的列表很类似:

          

    如你所见,如果你传入了一个数值给数组的切片,例如 arr[5:8]=12,数值被传递给了整个切片。区别于 python 的内建列表,数组的切片是原数组的视图。这意味着数据并不是被复制了,任何对于视图的修改丢回反应到原数组上。

    例子如下:

        

    假如你是 Numpy 新手,你可能会感到惊讶,因为其他的数组编程语言都是更为急切的复制数据。由于 Numpy 被设计成适合处理非常大的数组,你可以想象如果 Numpy 持续复制数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值