sequence-to-sequence
sequence-tosequence(Seq2Seq)模型简介
sequence-to-sequence 模型最早是由 google 工程师在 2014 年 《Sequence to Sequence Learning with Neural Networks》论文中提出。之后广泛应用于机器翻译中,该论文提出了一种新的 Encoder-Decoder 模型。之后在该模型结构上又发展出 sequence to sequence with addention 模型也在 NLP 领域中得到广泛使用。
模型优势:
(1)突破了传统的固定大小输入问题框架;
(2)开创了将 DNN 运用于翻译、聊天(问答)这类序列型任务的先河;
(3)在各主流语言之间的相互翻译,语音助手中人机短问快答的应用中有非常好的表现。
模型可用于:
语音识别;机器翻译;实体名称/主题提取;关系分类;路径查询回答;语音的产生;聊天机器人,自动问答机器人;文本分类;文本摘要;产品销售预测等。
什么是 Encoder-Decoder?
Encoder-Decoder 模型主要是 NLP 领域里的概念。它被广泛应用于机器翻译、语音识别等任务。它并不特指某种具体的算法,而是一类算法的统称。Encoder-Decoder 算是一个通用的框架,在这个框架下可以使用不同的算法来解决不同的任务。
Encoder-Decoder 这个框架很好的诠释了机器学习的核心思路:
将现实问题转化为数学问题,通过求解数学问题,从而解决现实问题。
Encoder 又称作编码器。它的作用是 将现实问题转化为数学问题。
Decoder 又称作解码器。它的作用是 求解数学问题,并转化为现实世界的解决方案。
把 2 个环节连接起来,用通用的图来表达则是下面的样子&