Numpy中array的基本操作(2)

Numpy中array的基本操作(2)

Numpy中如何对数组进行索引查询

这里介绍常用的3中对array的索引:1.普通索引 2.fancy索引 3.bool索引

一 普通的indexing:
以二维数组为例:

跟python中的list相同,array的序号也是从0开始的哦
X.arange(5) = [0, 1, 2, 3, 4]
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二 Fancy indexing:
通过这种索引方式,很容易在明确了数组中某个值的位置索引的时候,获取到这个值。
1.对一维数组进行fancy索引
索引参数为一维数组:
在这里插入图片描述
索引参数为二维数组:
在这里插入图片描述
2.对二维数组进行 fancy索引:
A[ [行的索引] , [列的索引] ]
A[ [行的索引] , : ] 默认所有列
A[ [行的索引] ] 默认所有列
A[ : , [列的索引] ] 默认所有行
在这里插入图片描述
取出指定的元素:
在这里插入图片描述

三 bool索引
一维数组为例:
在这里插入图片描述
二维数组为例:
在这里插入图片描述
条件组合:
在这里插入图片描述
参考链接:https://www.bilibili.com/video/BV1U7411x76j?t=110&p=7

numpyarray是一个多维数组,可以用于存储和处理多维数据。以下是numpyarray的常用用法: 1. 创建一个array:可以通过numpy.array()函数创建一个array,也可以通过其他numpy函数(如numpy.zeros()和numpy.ones())创建。 2. 访问和修改array的元素:可以通过索引访问和修改array的元素,索引从0开始。 3. 对array进行运算:可以进行基本的数学运算,如加、减、乘、除,也可以进行向量和矩阵运算,如点乘、矩阵乘法、求逆等。 4. 向array添加元素:可以通过numpy.append()函数向array添加元素,也可以通过numpy.concatenate()函数将两个array合并。 5. 对array进行切片操作:可以通过切片操作获取array的某一部分,也可以修改array的某一部分。 6. 对array进行统计计算:可以使用numpy的统计函数,如numpy.mean()、numpy.median()、numpy.std()等对array进行统计计算。 7. 对array进行排序:可以使用numpy的排序函数,如numpy.sort()、numpy.argsort()、numpy.lexsort()等对array进行排序。 8. 对array进行形状变换:可以使用numpy的reshape()函数对array进行形状变换,也可以使用transpose()函数对array进行转置。 9. 对array进行逻辑运算:可以使用numpy的逻辑运算函数,如numpy.logical_and()、numpy.logical_or()、numpy.logical_not()等对array进行逻辑运算。 10. 对array进行随机数生成:可以使用numpy的random模块生成随机数,如numpy.random.rand()、numpy.random.randn()、numpy.random.randint()等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值