Pytorch:transforms的二十二个方法


本文对transforms.py中的各个预处理方法进行介绍和总结。主要从官方文档中总结而来,官方文档只是将方法陈列,没有归纳总结,顺序很乱,这里总结一共有四大类,方便大家索引:

  1. 裁剪——Crop
    中心裁剪:transforms.CenterCrop
    随机裁剪:transforms.RandomCrop
    随机长宽比裁剪:transforms.RandomResizedCrop
    上下左右中心裁剪:transforms.FiveCrop
    上下左右中心裁剪后翻转,transforms.TenCrop

  2. 翻转和旋转——Flip and Rotation
    依概率p水平翻转:transforms.RandomHorizontalFlip(p=0.5)
    依概率p垂直翻转:transforms.RandomVerticalFlip(p=0.5)
    随机旋转:transforms.RandomRotation

  3. 图像变换
    resize:transforms.Resize
    标准化:transforms.Normalize
    转为tensor,并归一化至[0-1]:transforms.ToTensor
    填充:transforms.Pad
    修改亮度、对比度和饱和度:transforms.ColorJitter
    转灰度图:transforms.Grayscale
    线性变换:transforms.LinearTransformation()
    仿射变换:transforms.RandomAffine
    依概率p转为灰度图:transforms.RandomGrayscale
    将数据转换为PILImage:transforms.ToPILImage
    transforms.Lambda:Apply a user-defined lambda as a transform.

  4. 对transforms操作,使数据增强更灵活
    transforms.RandomChoice(transforms), 从给定的一系列transforms中选一个进行操作
    transforms.RandomApply(transforms, p=0.5),给一个transform加上概率,依概率进行操作
    transforms.RandomOrder,将transforms中的操作随机打乱

一、 裁剪——Crop

1.随机裁剪:transforms.RandomCrop

class torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode=‘constant’)
功能:依据给定的size随机裁剪
参数:
size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size)
padding-(sequence or int, optional),此参数是设置填充多少个pixel。
当为int时,图像上下左右均填充int个,例如padding=4,则上下左右均填充4个pixel,若为3232,则会变成4040。
当为sequence时,若有2个数,则第一个数表示左右扩充多少,第二个数表示上下的。当有4个数时,则为左,上,右,下。
fill- (int or tuple) 填充的值是什么(仅当填充模式为constant时有用)。int时,各通道均填充该值,当长度为3的tuple时,表示RGB通道需要填充的值。
padding_mode- 填充模式,这里提供了4种填充模式,1.constant,常量。2.edge 按照图片边缘的像素值来填充。3.reflect,暂不了解。 4. symmetric,暂不了解。

2.中心裁剪:transforms.CenterCrop

class torchvision.transforms.CenterCrop(size)
功能:依据给定的size从中心裁剪
参数:
size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size)

3.随机长宽比裁剪 transforms.RandomResizedCrop

class torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=2)
功能:随机大小,随机长宽比裁剪原始图片,最后将图片resize到设定好的size
参数:
size- 输出的分辨率
scale- 随机crop的大小区间,如scale=(0.08, 1.0),表示随机crop出来的图片会在的0.08倍至1倍之间。
ratio- 随机长宽比设置
interpolation- 插值的方法,默认为双线性插值(PIL.Image.BILINEAR)

4.上下左右中心裁剪:transforms.FiveCrop

class torchvision.transforms.FiveCrop(size)
功能:对图片进行上下左右以及中心裁剪,获得5张图片,返回一个4D-tensor
参数:
size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size)

5.上下左右中心裁剪后翻转: transforms.TenCrop

class torchvision.transforms.TenCrop(size, vertical_flip=False)
功能:对图片进行上下左右以及中心裁剪,然后全部翻转(水平或者垂直),获得10张图片,返回一个4D-tensor。
参数:
size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size)
vertical_flip (bool) - 是否垂直翻转,默认为flase,即默认为水平翻转

二、翻转和旋转——Flip and Rotation

6.依概率p水平翻转transforms.RandomHorizontalFlip

class torchvision.transforms.RandomHorizontalFlip(p=0.5)
功能:依据概率p对PIL图片进行水平翻转
参数:
p- 概率,默认值为0.5

7.依概率p垂直翻转transforms.RandomVerticalFlip

class torchvision.transforms.RandomVerticalFlip(p=0.5)
功能:依据概率p对PIL图片进行垂直翻转
参数:
p- 概率,默认值为0.5

8.随机旋转:transforms.RandomRotation

class torchvision.transforms.RandomRotation(degrees, resample=False, expand=False, center=None)
功能:依degrees随机旋转一定角度
参数:
degress- (sequence or float or int) ,若为单个数,如 30,则表示在(-30,+30)之间随机旋转
若为sequence,如(30,60),则表示在30-60度之间随机旋转
resample- 重采样方法选择,可选 PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC,默认为最近邻
expand- ?
center- 可选为中心旋转还是左上角旋转

三、图像变换

9.resize:transforms.Resize

class torchvision.transforms.Resize(size, interpolation=2)
功能:重置图像分辨率
参数:
size- If size is an int, if height > width, then image will be rescaled to (size * height / width, size),所以建议size设定为h*w
interpolation- 插值方法选择,默认为PIL.Image.BILINEAR

10.标准化:transforms.Normalize

class torchvision.transforms.Normalize(mean, std)
功能:对数据按通道进行标准化,即先减均值,再除以标准差,注意是 chw

11.转为tensor:transforms.ToTensor

class torchvision.transforms.ToTensor
功能:将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1]
注意事项:归一化至[0-1]是直接除以255,若自己的ndarray数据尺度有变化,则需要自行修改。

12.填充:transforms.Pad

class torchvision.transforms.Pad(padding, fill=0, padding_mode=‘constant’)
功能:对图像进行填充
参数:
padding-(sequence or int, optional),此参数是设置填充多少个pixel。
当为int时,图像上下左右均填充int个,例如padding=4,则上下左右均填充4个pixel,若为3232,则会变成4040。
当为sequence时,若有2个数,则第一个数表示左右扩充多少,第二个数表示上下的。当有4个数时,则为左,上,右,下。
fill- (int or tuple) 填充的值是什么(仅当填充模式为constant时有用)。int时,各通道均填充该值,当长度为3的tuple时,表示RGB通道需要填充的值。
padding_mode- 填充模式,这里提供了4种填充模式,1.constant,常量。2.edge 按照图片边缘的像素值来填充。3.reflect,? 4. symmetric,?

13.修改亮度、对比度和饱和度:transforms.ColorJitter

class torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)
功能:修改修改亮度、对比度和饱和度

14.转灰度图:transforms.Grayscale

class torchvision.transforms.Grayscale(num_output_channels=1)
功能:将图片转换为灰度图
参数:
num_output_channels- (int) ,当为1时,正常的灰度图,当为3时, 3 channel with r == g == b

15.线性变换:transforms.LinearTransformation()

class torchvision.transforms.LinearTransformation(transformation_matrix)
功能:对矩阵做线性变化,可用于白化处理! whitening: zero-center the data, compute the data covariance matrix
参数:
transformation_matrix (Tensor) – tensor [D x D], D = C x H x W

16.仿射变换:transforms.RandomAffine

class torchvision.transforms.RandomAffine(degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0)
功能:仿射变换

17.依概率p转为灰度图:transforms.RandomGrayscale

class torchvision.transforms.RandomGrayscale(p=0.1)
功能:依概率p将图片转换为灰度图,若通道数为3,则3 channel with r == g == b

18.将数据转换为PILImage:transforms.ToPILImage

class torchvision.transforms.ToPILImage(mode=None)
功能:将tensor 或者 ndarray的数据转换为 PIL Image 类型数据
参数:
mode- 为None时,为1通道, mode=3通道默认转换为RGB,4通道默认转换为RGBA

19.transforms.Lambda

Apply a user-defined lambda as a transform.
暂不了解,待补充。

四、对transforms操作,使数据增强更灵活

PyTorch不仅可设置对图片的操作,还可以对这些操作进行随机选择、组合

20.transforms.RandomChoice(transforms)

功能:从给定的一系列transforms中选一个进行操作,randomly picked from a list

21.transforms.RandomApply(transforms, p=0.5)

功能:给一个transform加上概率,以一定的概率执行该操作

22.transforms.RandomOrder

功能:将transforms中的操作顺序随机打乱

转载请注明出处:https://blog.csdn.net/u011995719/article/details/85107009

<think>好的,我现在需要回答用户关于PyTorchtransforms.Normalize()函数的问题。首先,我要确保自己正确理解这个函数的作用和用法。根据提供的引用内容,特别是引用[1]、[3]、[4]和[5],transforms.Normalize()主要用于对图像数据进行标准化处理,也就是将每个通道的数据减去均值,再除以标准差,这样可以使得数据分布接近标准正态分布,有助于模型训练时的收敛。 接下来,我需要整理这些引用的信息。引用[5]明确指出,标准化是按通道进行的,公式是output=(input-mean)/std。这里的mean和std需要用户根据数据集计算得到,例如对于ImageNet数据集,常用的均值是[0.485, 0.456, 0.406],标准差是[0.229, 0.224, 0.225],如引用[3]中的示例所示。而引用[1]中提到用户可能需要自己计算数据集的均值和标准差,或者使用官方提供的值。 然后,关于用法,用户通常会在transforms.Compose中将Normalize作为预处理流程的一部分,跟在ToTensor之后,因为ToTensor将图像转换为张量并将像素值缩放到[0,1]范围。例如,引用[3]中的代码示例展示了如何组合Resize、ToTensor和Normalize。同时,引用[4]提到DataLoader用于批量处理和打乱数据,说明Normalize是在数据加载时应用的预处理步骤。 我还需要注意,Normalize的参数需要是每个通道的均值和标准差,顺序是RGB。例如,如果处理的是单通道图像(如灰度图),则mean和std应为单值列表。此外,inplace参数可选,用于决定是否原地操作,但默认可能为False,以避免修改原始数据。 可能用户会有疑问,比如如何计算自己的数据集的mean和std,或者为什么需要这样做。这时候需要参考引用[1]中提到的用户可能需要自己实现计算,或者使用已有的值。同时,标准化有助于模型训练,这一点需要明确说明。 最后,生成相关问题时要覆盖函数的参数、计算均值和标准差的方法、标准化对模型的影响,以及与其他transforms的组合使用。例如,如何组合多个变换,或者如何处理不同数据集的标准化参数。 确保回答结构清晰,分点解释作用和用法,并给出示例代码,同时注意LaTeX格式的正确使用,比如变量用$...$,独立公式用$$...$$。需要检查是否有遗漏的引用,比如引用[2]提到FiveCrop返回的是元组,可能和Normalize的使用场景不同,但当前问题不涉及,可以忽略。确认所有引用来源正确标注,例如在提到计算mean和std时引用[1],在示例代码处引用[3]等。 总结回答结构:先解释作用,再说明参数,然后给出使用步骤和示例,最后注意事项。相关问题应涵盖计算参数、参数影响、组合使用和不同数据集的适用性。</think>### PyTorchtransforms.Normalize()函数的作用与用法 #### 作用 `transforms.Normalize()`用于对图像数据进行**标准化**处理,公式为: $$ \text{output} = \frac{\text{input} - \text{mean}}{\text{std}} $$ 其目的是将每个通道的像素值调整为均值为0、标准差为1的分布,从而加速模型收敛并提升训练稳定性[^5]。 #### 参数说明 - `mean`:各通道的均值(需按RGB顺序传入)。 - `std`:各通道的标准差。 - `inplace`:是否原地修改数据,默认为`False`。 #### 使用步骤 1. **与`transforms.Compose`组合**:通常与`ToTensor()`配合使用,先转换图像为张量并缩放到$[0,1]$,再进行标准化[^3]。 ```python transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) ``` 2. **数据集适配**:若使用自定义数据集,需重新计算`mean`和`std`,方法是对所有样本的每个通道计算均值和标准差[^1]。 #### 示例代码 ```python # 使用ImageNet的标准化参数 normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 单通道(灰度图)示例 gray_normalize = transforms.Normalize(mean=[0.5], std=[0.5]) ``` #### 注意事项 - **顺序要求**:`Normalize`必须位于`ToTensor()`之后,因为只有张量才能进行通道运算。 - **数值范围**:标准化后的像素值可能为负值或超出$[0,1]$,但神经网络可处理此范围。 ---
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值