文献速递:帕金森的疾病分享–多模态机器学习预测帕金森病
Title
题目
Multi-modality machine learning predicting Parkinson’s disease
多模态机器学习预测帕金森病
01
文献速递介绍
对于渐进性神经退行性疾病,早期和准确的诊断是有效开发和使用新干预措施的关键。这种早期检测范式旨在在患者认识到症状和体征之前,当疾病过程最容易接受干预时,识别、分析并防止或管理疾病。
这里我们描述的工作通过数据驱动的方式使用成本效益高的方法促进准确和早期诊断。这份报告还描述了在促进生产规模分析多模态基因组和临床数据的背景下,应用一个开源自动机器学习(ML),GenoML,的情况。
国家人类基因组研究所发布的最新战略愿景声明,到2030年,表观遗传学和转录组学的特征将常规地纳入到基因型对表型影响的预测模型中。生物医学研究人员目前正处于两项科学进展的交汇点,这将促进早期检测和远程识别潜在高风险个体:首先,大量临床、人口统计和遗传/基因组数据集的可用性;其次,机器学习(ML)流程自动化和人工智能的进展,以最大化利用这些大量的、容易获得的数据的价值。
首次就诊时的正确临床诊断,只有80%在病理学上确认为帕金森病(PD)。以前的生物标志物研究,特别是在神经退行性疾病中,主要关注广为人知的统计方法和线性模型,使用单一指标或少数几个指标进行预测。在过去几年中,多项研究使用ML探索了不同的模态,如CSF生物标志物、成像、RNA或包括与运动相关的指标,甚至可穿戴传感器数据。虽然这些努力在分类上表现良好,但我们寻求基于相对低成本且容易获得的数据构建模型。
Results
结果
We have shown that integrating multiple modalities improved model performance in predicting PD diagnosis in a mixed population of cases and controls. For a summary of basic clinical and demographic features, please refer to Table 1 and for a summary of the analysis, please refer to Fig. 1. Additional information in regards to cohorts and interpretation for ML metrics and models are included in Supplementary Notes 2, 3. Our multi-modality model showed a higher area under the curve (AUC;89.72%) than just the clinico-demographic data available prior to neurological assessment (87.52%), the genetics-only model from genome sequencing data and polygenic risk score (PRS; 70.66%), or the transcriptomics-only model from genome-wide whole blood RNA sequencing data (79.73%) in withheld PPMI samples(see Table 2 and Fig. 2 for summaries). This model’s performance improved after tuning, described below and in Table 3, where the mean AUC