《乳腺密度高的女性中,使用AI辅助的乳腺X线筛查与补充筛查超声的比较研究》| 文献速递-基于深度学习的乳房、前列腺疾病诊断系统

Title

题目

Screening Outcomes of Mammography with AI in Dense Breasts: A Comparative Study with Supplemental Screening US

《乳腺密度高的女性中,使用AI辅助的乳腺X线筛查与补充筛查超声的比较研究》

Background

背景

Comparative performance between artificial intelligence (AI) and breast US for women with dense breasts undergoing screening mammography remains unclear.

人工智能(AI)与乳腺超声在乳腺密度高的女性进行乳腺X线筛查时的比较表现仍不明确。

Method

方法

A retrospective database search identified consecutive asymptomatic women (≥40 years of age) with dense breasts who underwent mammography plus supplemental whole-breast handheld US from January 2017 to December 2018 at a primary health care center. Sequential reading for mammography alone and mammography with the aid of an AI system was conducted by five breast radiologists, and their recall decisions were recorded. Results of the combined mammography and US examinations were collected from the database. A dedicated breast radiologist reviewed marks for mammography alone or with AI to confirm lesion identification. The reference standard was histologic examination and 1-year follow-up data. The cancer detection rate (CDR) per 1000 screening examinations, sensitivity, specificity, and abnormal interpretation rate (AIR) of mammography alone, mammography with AI, and mammography plus US were compared.

一项回顾性数据库搜索识别出连续的无症状女性(年龄≥40岁,乳腺密度高),她们在2017年1月至2018年12月期间在一家初级医疗中心接受了乳腺X线检查及补充的全乳手持超声检查。五名乳腺放射科医生分别进行了单独乳腺X线检查和借助AI系统的乳腺X线检查的连续阅片,并记录了他们的召回决定。从数据库中收集了乳腺X线检查与超声联合检查的结果。一位专门的乳腺放射科医生复审了单独乳腺X线检查或与AI辅助检查的标记,以确认病灶的识别。参考标准为组织学检查和1年随访数据。比较了单独乳腺X线检查、AI辅助乳腺X线检查以及乳腺X线检查加超声的每千次筛查中的癌症检出率(CDR)、敏感性、特异性和异常解释率(AIR)。

Conclusion

结论

Although AI improved the specificity

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值