算法模型——决策树

这篇博客介绍了决策树的基本概念、理论基础,包括ID3、C4.5和CART算法的工作原理,并通过实例详细解析了决策树的构建过程。还探讨了决策树与逻辑回归的区别以及优缺点。
摘要由CSDN通过智能技术生成

决策树属于监督学习,是一种预测模型。

1. 概念

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。

决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。

树模型和线性模型有什么区别呢?最重要的是,树形模型是一个一个特征进行处理,线性模型是所有特征给予权重相加得到一个新的值。

决策树与逻辑回归的分类区别也在于此,逻辑回归是将所有特征变换为概率后,通过大于某一概率阈值的划分为一类,小于某一概率阈值的为另一类;而决策树是对每一个特征做一个划分。另外逻辑回归只能找到线性分割(输入特征x与logit之间是线性的,除非对x进行多维映射),而决策树可以找到非线性分割。

而树形模型更加接近人的思维方式,可以产生可视化的分类规则,产生的模型具有可解释性(可以抽取规则)。树模型拟合出来的函数其实是分区间的阶梯函数。

决策树学习:采用自顶向下的递归的方法,基本思想是以信息熵为度量构造一棵熵值下降最快的树,到叶子节点处熵值为0(叶节点中的实例都属于一类)。

2. 基础理论

1. 信息熵

信息熵H(X)、联合熵H(X,Y)、条件熵H(X|Y)、互信息I(X,Y)之间关系如图示:
在这里插入图片描述

2. 算法思想

基本思想是以信息熵为度量构造一棵熵值下降最快的树,到叶子节点处的熵值为零,此时每个叶子节点中的实例都属于同一类。例根据多个属性来判断瓜属于好瓜还是坏瓜的结论,图示如下:
在这里插入图片描述

3. 决策树 ID3算法

使用信息增益作为不纯度,核心思想是以信息增益度量属性选择,选择分裂后的信息增益最大的,也就是熵在分裂前后差值最大的属性进行分裂。
信息增益计算
根据log(x)的函数可知,p值越小,熵越大,所以当分组完全是会出现p=0此时熵最大,概率为0说明已经最纯了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值