问与答_网络

本文深入探讨了无线通信中的天线设计与测量技术,包括有源和无源天线的测试方案、天线性能指标、匹配网络、滤波器等效电路、射频系统结构和关键参数。内容涵盖了从四分之一波长变换器的理解到双馈电圆极化天线的工作原理,再到匹配网络和功分器设计,以及放大器的增益、稳定性、噪声系数等多个方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


有源天线的测量方案?以及为甚么是这样的

天线测试分为无源测试和有源测试;
无源测试指标:VSWR 效率 增益 不圆度 轴比 天线方向等;
为什么要测天线无线性能?
1、内置天线:安装于整机结构内部,主要分为Ipex天线端口、射频线焊接式两类。用于量化评估其与整机结构、材质的设计匹配性、及装配对无线性能影响;
2、外置天线:安装于整机外部,主要分为Ipex天线端口、射频线焊接式两类。用于量化评估其天线设计质量、装配对无线性能影响;
3、PCB板载天线:安装于PCBA上,主要分为SMT贴片式、SMT插件式。用于量化评估其与整机结构、材质的设计匹配性、射频微带线PCB layout设计、射频电路优化情况;
4、部分产品认证所需的天线增益报告;
测无源需要做哪些准备?
1、内置天线、PCB板载天线需在整机环境下测试,并先确认待测产品频段范围、尺寸大小、重量大小;
2、对无Ipex端口产品, 需外接射频同轴线测试,并明确射频线焊接的馈点及“地”的位置;
3、确认所需测试的无源指标,填写并提交《检测申请表》;

有源测试指标:OTA(over the air)包含TRP TIS等

有源测试图片
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

带通滤波器的等效电路,为什么是这样的

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

贴片天线谐振边为什么是半波长?

谐振就是阻抗的虚部为0的点,这一点结合史密斯原图来看比较直观。那么问题来了,在茫茫波长中,为什么半波长是可以让天线谐振

### 模型只问不答的原因分析 当模型表现“只问不答”的行为时,可能涉及多个层面的问题。这种现象通常可以归因于以下几个方面: 1. **Prompt 定义不清** 如果 Prompt 的设计未能清晰传达预期的任务目标或约束条件,则可能导致模型无法理解其应完成的具体任务[^1]。例如,如果未明确指定输入与输之间的关系或者缺乏足够的上下文信息,模型可能会陷入困惑状态。 2. **训练数据偏差** 若模型在训练阶段接触到的数据集中存在显著偏向某些特定类型的问答模式而忽略了其他形式(比如仅学习到了如何提问而非回答),这也会造成类似情况发生。这意味着该网络结构对于生成答案部分的学习不足,进而影响实际应用效果。 3. **参数配置不当** 不合适的超参数设置也可能引发此类问题。例如温度值过高会增加采样随机性;长度惩罚系数过大则抑制长序列生成等情形下都可能现异常表现。 4. **推理逻辑缺陷** 另外一种可能性来源于内部机制本身存在的漏洞——即尽管提供了充足的信息却依旧无法得合理结论的现象。这种情况往往需要深入审查算法实现细节才能发现根本所在予以修正。 --- ### 解决方案探讨 针对上述提到的各种潜在成因,可采取如下措施加以改善: #### 明确指令描述 优化 Prompts 设计至关重要,确保每一个提示都能够准确无误地表达所需执行操作的要求以及期望获得的结果类型 。可以通过观察先前失败案例中的解释说明来进一步完善这些指导语句的内容构成方式 ,使得机器更容易理解和遵循指示行事 。 #### 扩充多样化样本集 为了克服由于源材料局限所引起的表现失衡状况 , 应考虑引入更多元化的实例进入再教育流程当中去 . 这不仅有助于提升整体泛化能力, 同时还能有效减少单一方向偏好带来的负面影响. #### 调整关键控制变量 仔细校准各项调节因子直至找到最佳平衡点为止 – 包括但不限于降低探索程度(temperature), 减轻过短预测倾向(length penalty)等等具体做法均值得尝试一番 . #### 加强验证测试环节 最后但同样重要的是建立一套完整的质量监控体系用于持续跟踪评估改进后的成效如何,及时作相应调整以保持良好运作态势不变 。 --- ```python def refine_model_behavior(model_output): """ A function to analyze and adjust model behavior based on its outputs. Args: model_output (dict): Contains both the answer and reasoning provided by the model Returns: str: Adjusted prompt or feedback message for further refinement """ if not model_output.get('answer'): # If no answer is given but there's a reason stated if 'reason' in model_output: return f"Adjust your prompt according to this explanation: {model_output['reason']}" else: return "The model failed silently; consider revising input clarity." elif isinstance(model_output['answer'], list): return "Ensure that multiple answers are expected within prompts." # Example usage of refining logic sample_output = {"reason": "Insufficient context was detected.", "answer": ""} adjusted_feedback = refine_model_behavior(sample_output) print(adjusted_feedback) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值