修改列名:
直接调用接口:
df.rename()
看一下接口中的定义:
def rename(self, *args, **kwargs):
"""
Alter axes labels.
Function / dict values must be unique (1-to-1). Labels not contained in
a dict / Series will be left as-is. Extra labels listed don't throw an
error.
See the :ref:`user guide <basics.rename>` for more.
Parameters
----------
mapper, index, columns : dict-like or function, optional
dict-like or functions transformations to apply to
that axis' values. Use either ``mapper`` and ``axis`` to
specify the axis to target with ``mapper``, or ``index`` and
``columns``.
axis : int or str, optional
Axis to target with ``mapper``. Can be either the axis name
('index', 'columns') or number (0, 1). The default is 'index'.
copy : boolean, default True
Also copy underlying data
inplace : boolean, default False
Whether to return a new DataFrame. If True then value of copy is
ignored.
level : int or level name, default None
In case of a MultiIndex, only rename labels in the specified
level.
Returns
-------
renamed : DataFrame
See Also
--------
pandas.DataFrame.rename_axis
Examples
--------
``DataFrame.rename`` supports two calling conventions
* ``(index=index_mapper, columns=columns_mapper, ...)``
* ``(mapper, axis={'index', 'columns'}, ...)``
We *highly* recommend using keyword arguments to clarify your
intent.
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
a c
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
a B
0 1 4
1 2 5
2 3 6
Using axis-style parameters
>>> df.rename(str.lower, axis='columns')
a b
0 1 4
1 2 5
2 3 6
>>> df.rename({1: 2, 2: 4}, axis='index')
A B
0 1 4
2 2 5
4 3 6
"""
axes = validate_axis_style_args(self, args, kwargs, 'mapper', 'rename')
kwargs.update(axes)
# Pop these, since the values are in `kwargs` under different names
kwargs.pop('axis', None)
kwargs.pop('mapper', None)
return super(DataFrame, self).rename(**kwargs)
注意:
- 一个*,输入可以是数组、元组,会把输入的数组或元组拆分成一个个元素。
- 两个*,输入必须是字典格式
示例:
>>>import pandas as pd
>>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]})
>>> a
A B C
0 1 4 7
1 2 5 8
2 3 6 9
#将列名A替换为列名a,B改为b,C改为c
>>>a.rename(columns={'A':'a', 'B':'b', 'C':'c'}, inplace = True)
>>>a
a b c
0 1 4 7
1 2 5 8
2 3 6 9
调整列的顺序:
如:
>>> import pandas
>>> dict_a = {'user_id':['webbang','webbang','webbang'],'book_id':['3713327','4074636','26873486'],'rating':['4','4','4'],
'mark_date':['2017-03-07','2017-03-07','2017-03-07']}
>>> df = pandas.DataFrame(dict_a) # 从字典创建DataFrame
>>> df # 创建好的df列名默认按首字母顺序排序,和字典中的先后顺序并不一样,字典中'user_id','book_id','rating','mark_date'
book_id mark_date rating user_id
0 3713327 2017-03-07 4 webbang
1 4074636 2017-03-07 4 webbang
2 26873486 2017-03-07 4 webbang
直接修改列名:
>>> df = df[['user_id','book_id','rating','mark_date']] # 调整列顺序为'user_id','book_id','rating','mark_date'
>>> df
user_id book_id rating mark_date
0 webbang 3713327 4 2017-03-07
1 webbang 4074636 4 2017-03-07
2 webbang 26873486 4 2017-03-07
就可以了。