ubuntu重装系统后安装nvidia驱动+tensorflow-gpu

目录

一、安装NVIDIA驱动

二、安装CUDA

三、安装cuDNN

四、安装 Tensorflow


系统:Ubuntu 16.4

电脑配置:显卡GTX 1060 6GB

注意:安装tensorflow前一定要先确定自己的CUDA和cuDNN的版本,因为CUDA和cuDNN一定是和Tensorflow对应的.否则安装成功以后,在python里导入Tensorflow的时候也会报错.本文选择的版本是:

Kreas 2.0.6    tensorflow-gpu 1.2.1(后期安装1.1.0)    py35cuda8.0 cudnn6.0_0(后期为了版本对应问题改成5.1)

anaconda指定安装版本:pip install tensorflow-gpu==1.1.0

conda uninstall tensorflow-gpu==1.1.0

conda install tensorflow-gpu==1.1.0

conda install -y -c -conda-force keras=2.0.6

(官网版本对应:https://tensorflow.google.cn/install/source)

一、安装NVIDIA驱动

        步骤可以完全参考博客点击打开链接,写的很好,并且推荐这位作者的文章.安装结束后:

        

二、安装CUDA

        1.  CUDA Toolkit 8.0 - Feb 2017 点击打开官方下载链接  (需要注册帐号)

         注意:下载runfile(local)文件 

        

         2. 下载完成以后,cd 到CUDA8.0所在位置(我的是~/Downloads/目录下),终端输入:.

             $ sudo chmod +x cuda_8.0.61_375.26_linux.run

             $ sudo ./cuda_8.0.61_375.26_linux.run

         安装过程中会有几个选项需要确认:

         注意:不要安装cuda自带的显卡驱动,其他的直接选y,路径输入默认值即可  

Do you accept the previously read EULA?
accept/decline/quit: accept

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?
(y)es/(n)o/(q)uit: n

Install the CUDA 8.0 Toolkit?
(y)es/(n)o/(q)uit: y

Enter Toolkit Location
 [ default is /usr/local/cuda-8.0 ]: 

Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y

Install the CUDA 8.0 Samples?
(y)es/(n)o/(q)uit: y

Enter CUDA Samples Location
 [ default is /home/yangqq ]: 

Installing the CUDA Toolkit in /usr/local/cuda-8.0 ...
Missing recommended library: libGLU.so
Missing recommended library: libXi.so
Missing recommended library: libXmu.so
Missing recommended library: libGL.so

Installing the CUDA Samples in /home/yangqq ...
Copying samples to /home/yangqq/NVIDIA_CUDA-8.0_Samples now...
Finished copying samples.

===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-8.0
Samples:  Installed in /home/yangqq, but missing recommended libraries

Please make sure that
 -   PATH includes /usr/local/cuda-8.0/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-8.0/lib64, or, add /usr/local/cuda-8.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-8.0/bin

Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-8.0/doc/pdf for detailed information on setting up CUDA.

***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run -silent -driver

Logfile is /tmp/cuda_install_15201.log
Signal caught, cleaning up

          3.配置环境

            安装完成以后,需要把cuda路径添加到当前用户的配置文件里:
            $ sudo gedit ~/.bashrc

            将安装路径添加到文件末尾:

            export PATH=/usr/local/cuda-8.0/bin:$PATH
            export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH

            然后执行如下命令使路径生效:

             $ . ~/.bashrc

          4. 验证

             终端输入:

             $ nvcc -V

             可以看到cuda的版本信息:

            

             接着尝试运行一下cuda中自带的例子

             $ cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
             $ sudo make
             $ ./deviceQuery

             可以看到输出成功:

            

             ? CDUA Driver Version 版本和Runtime Version版本不同

三、安装cuDNN

          官网下载cuda对应版本的cudnn点击打开链接(后期我自己为了版本对应安装了5.1)

       

          注意:下载cuDNN v6.0 Library for Linux(后期我自己为了版本对应安装了5.1)

          下载后在cnDNN压缩包下载目录下,打开终端,执行以下命令:

          $ tar -xzvf cudnn-8.0-linux-x64-v6.0.tgz    #解压压缩包得到cudda文件夹

          
          $ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
          $ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
          $ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
          完成后查看cudnn版本   

          $ cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

          出现下图说明安装成功:

         

四、安装 Tensorflow

         Tensorflow的安装方式主要有两大类:

         一是直接利用官方或第三方编译好的release版本进行安装(推荐)
         二是利用官方的源代码编译生成包后安装

        用no1的情况,第一种方法最简单,其实就相当于官方帮我们把源代码进行编译得到安装包然后提供给我们直接安装,不需要我们自己再做这个事情;用no2的情况,如果你用官方编译后的包安装失败,或者你自己修改的源代码需要重新编译就可以采用第二种方法。此外,还可以根据个人情况选择安装cpu版本和gpu版本,二者的区别不大,主要区别在选择的编译包不同、gpu版本需要安装好cuda和cudnn。

        下面分别介绍这两种方法:

         1. release版本安装

         直接利用官方发布的release版本进行安装的话,主要有两种安装方法:pip安装和anaconda安装两种,我使用anaconda安装

         (先说下pip安装)

                        ($ sudo apt-get install python3-pip python3-dev  # install pip for Python 3.n

                         $ pip install tensorflow-gpu 的1.1.0

                         )

          anaconda安装

          1) pip install tensorflow-gpu==1.1.0

              因为我的网络不稳定,下载一半就会断网下载失败,所以换成清华镜像

              $ pip install -i https://pypi.mirrors.ustc.edu.cn/simple/ tensorflow-gpu==1.1.0

          conda uninstall tensorflow-gpu==1.1.0 #pip安装过了我就没有再卸载重装

          conda install tensorflow-gpu==1.1.0 #pip安装过了我就没有再卸载重装

          conda install -y -c -conda-force keras=2.0.6. #最近看没有了,最低2.0.8

          pip install Keras==2.0.6 

          附:清华大学镜像https://mirrors.tuna.tsinghua.edu.cn/tensorflow/linux/gpu/

          安装后查看版本检查是否安装成功:

         

          2. 利用源码编译安装(点击这里查看参考博文)

五、测试

          点击这里查看参考博文          

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值