深度学习&PyTorch笔记 (2) logistic 回归

logistic 适用于分类问题。
同之前引入所需要的库

import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt

建立模型,使用Sigmoid函数

class LogisticRegression(nn.Module):
    def __init__(self):
        super(LogisticRegression, self).__init__()
        self.lr = nn.Linear(2, 1)
        self.sm = nn.Sigmoid()

    def forward(self, x):
        x = self.lr(x)
        x = self.sm(x)
        return x

实例化,选择损失函数和优化函数。
由于选择的是Sigmoid函数,所以损失函数选择BCE,公式为

????=−(?∗???(?̂)+(1−?)∗???(1−?̂))loss=−(y∗log(y)+(1−y)∗log(1−y))
优化方式还是选择梯度下降法,找到损失函数的梯度,沿着梯度的方向进行优化,以便找到损失的极小值,来确定参数。


logistic_model = LogisticRegression()
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(logistic_model.parameters(), lr=1e-3, omentum=0.9)

开始训练


for epoch in range(50000):
    x = Variable(x_data)
    y = Variable(y_data)
    # forward

    out = logistic_model(x)
    loss = criterion(out, y)
    print_loss = loss.item()
    mask = out.ge(0.5).float()
    correct = (mask == y).sum()
    acc = correct.item() / x.size(0)
    # backward

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

最后的结果如下:

w0, w1 = logistic_model.lr.weight[0]
w0 = w0.item()
w1 = w1.item()
b0 = logistic_model.lr.bias.item()

plot_x = np.arange(30, 100, 0.1)
plot_y = (-w0 * plot_x - b0) / w1

分类结果分类结果

总结:线性回归和Logistic回归均是选择合适的模型及损失函数,通过某种优化方式对损失函数进行优化,找到损失函数最小的点,确定模型的参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值