logistic 适用于分类问题。
同之前引入所需要的库
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
建立模型,使用Sigmoid函数
class LogisticRegression(nn.Module):
def __init__(self):
super(LogisticRegression, self).__init__()
self.lr = nn.Linear(2, 1)
self.sm = nn.Sigmoid()
def forward(self, x):
x = self.lr(x)
x = self.sm(x)
return x
实例化,选择损失函数和优化函数。
由于选择的是Sigmoid函数,所以损失函数选择BCE,公式为
????=−(?∗???(?̂)+(1−?)∗???(1−?̂))loss=−(y∗log(y)+(1−y)∗log(1−y))
优化方式还是选择梯度下降法,找到损失函数的梯度,沿着梯度的方向进行优化,以便找到损失的极小值,来确定参数。
logistic_model = LogisticRegression()
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(logistic_model.parameters(), lr=1e-3, omentum=0.9)
开始训练
for epoch in range(50000):
x = Variable(x_data)
y = Variable(y_data)
# forward
out = logistic_model(x)
loss = criterion(out, y)
print_loss = loss.item()
mask = out.ge(0.5).float()
correct = (mask == y).sum()
acc = correct.item() / x.size(0)
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
最后的结果如下:
w0, w1 = logistic_model.lr.weight[0]
w0 = w0.item()
w1 = w1.item()
b0 = logistic_model.lr.bias.item()
plot_x = np.arange(30, 100, 0.1)
plot_y = (-w0 * plot_x - b0) / w1
分类结果
总结:线性回归和Logistic回归均是选择合适的模型及损失函数,通过某种优化方式对损失函数进行优化,找到损失函数最小的点,确定模型的参数。