自由空间阻抗
自由空间阻抗
Z
0
Z_0
Z0和自由空间中电磁波产生的电场和磁场量值有关。
Z
0
=
∣
E
∣
∣
H
∣
Z_0 = \frac{|E|}{|H|}
Z0=∣H∣∣E∣
其中,
∣
E
∣
|E|
∣E∣为电场强度,
∣
H
∣
|H|
∣H∣为磁场强度。
自由空间阻抗也等于真空磁导率
μ
0
\mu_0
μ0及真空中光速
c
0
c_0
c0的乘积,也等于真空电容率
ε
0
\varepsilon_0
ε0及真空中光速
c
0
c_0
c0的乘积的倒数,其数值大约是376.73031欧姆,其是一个定义值。
当一平面波通过一介电材料时也有类似的物理量说明其电场及磁场的关系,称为介质的本质阻抗或特性阻抗,其符号为
η
\eta
η。
Z
0
Z_0
Z0有时也称为自由空间的本质阻抗,其符号为
η
0
\eta_0
η0。
自由空间阻抗匹配
当介质的介电常数与磁导率的比值等于真空介电常数和磁导率的比值,那么介质与真空就是阻抗匹配的,产生的结果就是介质中的某个模式的电场强度和磁场强度的比值与真空中的相同,界面处就没有反射光。
超材料的光学性质
超材料的光学性质可由介电常数
ε
\varepsilon
ε和磁导率
μ
\mu
μ来描述,有时还需要额外的双各向异性参数
ξ
\xi
ξ。正常的光学材料
μ
\mu
μ约等于1,但是超材料中
μ
\mu
μ的数值完全不同。
以上的三个参数都与频率有关,并且光的传播方向和偏振态无关。另外,这些参数不一定为实数,一般超材料中的光学损耗都不能忽略(尤其是高频情况),导致
ε
\varepsilon
ε和
μ
\mu
μ的虚部很大。
折射率的大小由以下方程决定:
n
2
=
ε
μ
−
ξ
2
n^2 = \varepsilon \mu - \xi^2
n2=εμ−ξ2
当为实数ε和μ,并且假设 ξ = 0,折射率n是实数,但是可正可负。折射率的正负号是为了区分根据斯涅耳定律,在光学界面处折射光束的方向。
材料的阻抗为:
Z
=
μ
μ
0
ε
ε
0
Z = \sqrt{\frac{\mu \mu_0}{\varepsilon \varepsilon_0}}
Z=εε0μμ0
由于阻抗与
μ
ε
\frac{\mu}{\varepsilon}
εμ有关,而折射率与
μ
ε
\mu \varepsilon
με有关,两个介质折射率相同不一定具有相同的阻抗。(正常的光学介质中折射率决定了阻抗,
μ
\mu
μ约为1。)类似的,两个介质阻抗相同也可能具有不同的折射率。这在光反射中会用到,因为光学界面处反射光的大小与阻抗有关。例如,在真空与
μ
=
ε
=
−
1
\mu = \varepsilon = -1
μ=ε=−1的介质界面处不会发生反射,尽管折射率有
+
1
+1
+1变为
−
1
-1
−1,但是界面两边的阻抗是相同的。