1)
1)同网络层,多尺度卷积与池化融合(卷积核大小采用1*1、3*3和5*5,padding =0、1、2)
2)采用1x1卷积核来进行降维(减少计算成本)
3)采用GAP+全连接层(且仍用Dropout )
4)避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度(实际测试的时候,这两个额外的softmax会被去掉。)
2.Inception V2结构
1)用2个连续的3x3卷积层(stride=1)组成的小网络来代替单个的5x5卷积层
优点: 大卷积核有大感受野,保持感受野范围的同时又减少了参数量
3、Inception V3结构
1)任意nxn的卷积都可以通过1xn卷积后接nx1卷积来替代(例如:3*3=3*1+3*1)
注:
作者发现在网络的前期使用这种分解效果并不好,还有在中度大小的feature map上使用效果才会更好,最少的特征图大小在12-20之间最优
Inception V4(结合了残差神经网络ResNet):