Inception

1)

 

1)同网络层,多尺度卷积与池化融合(卷积核大小采用1*1、3*3和5*5,padding =0、1、2)

2)采用1x1卷积核来进行降维(减少计算成本)

3)采用GAP+全连接层(且仍用Dropout )

4)避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度(实际测试的时候,这两个额外的softmax会被去掉。)

 

2.Inception V2结构

1)用2个连续的3x3卷积层(stride=1)组成的小网络来代替单个的5x5卷积层

      优点: 大卷积核有大感受野,保持感受野范围的同时又减少了参数量

 

3、Inception V3结构

1)任意nxn的卷积都可以通过1xn卷积后接nx1卷积来替代(例如:3*3=3*1+3*1)

注:

作者发现在网络的前期使用这种分解效果并不好,还有在中度大小的feature map上使用效果才会更好,最少的特征图大小在12-20之间最优

 

Inception V4(结合了残差神经网络ResNet):

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值