InceptionNet又称googleNet,最初的设计思路是增加网络宽度:InceptionNet核心结构包括多个分支,分别对应不同的感受野。大的感受野适用大的目标,小的感受野适用小目标,如此网络具备了scale不变性。
不同感受野最终通过concat合并在一起,为了避免通道数爆炸,在每个分支上引入1x1卷积降低通道数目。
- Inception V2吸收了VGG的优点,利用多个小尺度卷积代替一个大尺度卷积,节省计算量;同时引入Batch Normalization层避免梯度消失,在inception V1中使用多个中间层loss,避免梯度消失。
- Inception V3引入filter分解,理论上任意nxn的卷积都可以分解成一个1xn和一个nx1代替,不损失精度同时提高速度
- Inception V4吸收Resnet的bottleneck结构