从Schrödinger方程和Heisenberg方程的等价性看Kalman滤波器和Gauss-Newton的等价性

Schrödinger equation:
− i ℏ ∂ ψ ∂ t = H ^ ψ -i\hbar\frac{\partial \psi}{\partial t}=\hat{H}\psi itψ=H^ψ
Heisenberg equation:
a ˙ ( t ) = H a ( t ) \dot{a}(t)=Ha(t) a˙(t)=Ha(t)

from Schrödinger to Heisenberg:
Let ψ = Σ i = 0 N a i ( t ) ϕ i ( r ⃗ ) \psi=\Sigma_{i=0}^{N} a_i(t)\phi_i(\vec{r}) ψ=Σi=0Nai(t)ϕi(r )
then: ∂ ψ ∂ t = Σ i = 0 N a ˙ i ( t ) ϕ i ( r ⃗ ) \frac{\partial \psi}{\partial t}=\Sigma_{i=0}^{N} \dot{a}_i(t)\phi_i(\vec{r}) tψ=Σi=0Na˙i(t)ϕi(r )
then: < ∂ ψ ∂ t , ϕ k ∗ > = a ˙ k ( t ) <\frac{\partial \psi}{\partial t},\phi_k^{*}>=\dot{a}_k(t) <tψ,ϕk>=a˙k(t)
then: < H ^ ψ , ϕ k ∗ > = Σ i = 0 N a i ( t ) < H ^ ϕ i , ϕ k ∗ > <\hat{H}\psi,\phi^*_k>=\Sigma_{i=0}^{N}a_i(t)<\hat{H}\phi_i,\phi_k^*> <H^ψ,ϕk>=Σi=0Nai(t)<H^ϕi,ϕk>
in all:
[ a 0 a 1 . . . a N ] ˙ = [ < H ^ ϕ 0 , ϕ 0 ∗ > , < H ^ ϕ 1 , ϕ 0 ∗ > , < H ^ ϕ 2 , ϕ 0 ∗ > , . . . , < H ^ ϕ N , ϕ 0 ∗ > < H ^ ϕ 0 , ϕ 1 ∗ > , < H ^ ϕ 1 , ϕ 1 ∗ > , < H ^ ϕ 2 , ϕ 1 ∗ > , . . . , < H ^ ϕ N , ϕ 1 ∗ > . . . < H ^ ϕ 0 , ϕ N ∗ > , < H ^ ϕ 1 , ϕ N ∗ > , < H ^ ϕ 2 , ϕ N ∗ > , . . . , < H ^ ϕ N , ϕ N ∗ > ] [ a 0 a 1 . . . a N ] \dot{ \begin{bmatrix} a_0\\a_1\\...\\a_N \end{bmatrix}}= \begin{bmatrix} <\hat{H}\phi_0,\phi_0^*>, <\hat{H}\phi_1,\phi_0^*>, <\hat{H}\phi_2,\phi_0^*>,...,<\hat{H}\phi_N,\phi_0^*>\\ <\hat{H}\phi_0,\phi_1^*>, <\hat{H}\phi_1,\phi_1^*>, <\hat{H}\phi_2,\phi_1^*>,...,<\hat{H}\phi_N,\phi_1^*>\\...\\ <\hat{H}\phi_0,\phi_N^*>, <\hat{H}\phi_1,\phi_N^*>, <\hat{H}\phi_2,\phi_N^*>,...,<\hat{H}\phi_N,\phi_N^*> \end{bmatrix} \begin{bmatrix} a_0\\a_1\\...\\a_N \end{bmatrix} a0a1...aN˙=<H^ϕ0,ϕ0>,<H^ϕ1,ϕ0>,<H^ϕ2,ϕ0>,...,<H^ϕN,ϕ0><H^ϕ0,ϕ1>,<H^ϕ1,ϕ1>,<H^ϕ2,ϕ1>,...,<H^ϕN,ϕ1>...<H^ϕ0,ϕN>,<H^ϕ1,ϕN>,<H^ϕ2,ϕN>,...,<H^ϕN,ϕN>a0a1...aN
Kalman Filter:
X k + 1 = A X k + B u k + w X_{k+1}=AX_k+Bu_k+w Xk+1=AXk+Buk+w
Y k = H X k + v Y_{k}=HX_k+v Yk=HXk+v
w w w~N(0, σ 1 \sigma_1 σ1)
v v v~N(0, σ 2 \sigma_2 σ2)

Gauss-Newton:
1-dimensional:
y=f(x)
y 1 − y 0 = f ( x 1 ) − f ( x 0 ) = f ′ ( ξ ) ( x 1 − x 0 ) y_1-y_0=f(x_1)-f(x_0) \\=f^{'}(\xi)(x_1-x_0) y1y0=f(x1)f(x0)=f(ξ)(x1x0)
which is
Δ y = f ′ ( ξ ) Δ x \Delta y=f^{'}(\xi)\Delta x Δy=f(ξ)Δx

suppose an NxM dimensional linear system:
y ⃗ = [ f 1 ( x ⃗ ) , f 2 ( x ⃗ ) , f 3 ( x ⃗ ) , . . . , f M ( x ⃗ ) ] \vec y=[f_1(\vec x),f_2(\vec x),f_3(\vec x),...,f_M(\vec x)] y =[f1(x ),f2(x ),f3(x ),...,fM(x )]

[ Δ y 0 Δ y 1 . . . Δ y N ] = [ ∂ f 0 ( x ⃗ ) ∂ x 0 , ∂ f 0 ( x ⃗ ) ∂ x 1 , ∂ f 0 ( x ⃗ ) ∂ x 2 , . . . , ∂ f 0 ( x ⃗ ) ∂ x N ∂ f 1 ( x ⃗ ) ∂ x 0 , ∂ f 1 ( x ⃗ ) ∂ x 1 , ∂ f 1 ( x ⃗ ) ∂ x 2 , . . . , ∂ f 1 ( x ⃗ ) ∂ x N . . . ∂ f M ( x ⃗ ) ∂ x 0 , ∂ f M ( x ⃗ ) ∂ x 1 , ∂ f M ( x ⃗ ) ∂ x 2 , . . . , ∂ f M ( x ⃗ ) ∂ x N ] [ Δ x 0 Δ x 1 . . . Δ x N ] \begin{bmatrix} \Delta y_0\\\Delta y_1\\...\\\Delta y_N \end{bmatrix}= \begin{bmatrix} \frac{\partial f_0(\vec x)}{\partial x_0}, \frac{\partial f_0(\vec x)}{\partial x_1}, \frac{\partial f_0(\vec x)}{\partial x_2},...,\frac{\partial f_0(\vec x)}{\partial x_N}\\ \frac{\partial f_1(\vec x)}{\partial x_0}, \frac{\partial f_1(\vec x)}{\partial x_1}, \frac{\partial f_1(\vec x)}{\partial x_2},...,\frac{\partial f_1(\vec x)}{\partial x_N}\\...\\ \frac{\partial f_M(\vec x)}{\partial x_0}, \frac{\partial f_M(\vec x)}{\partial x_1}, \frac{\partial f_M(\vec x)}{\partial x_2},...,\frac{\partial f_M(\vec x)}{\partial x_N} \end{bmatrix} \begin{bmatrix} \Delta x_0\\\Delta x_1\\...\\\Delta x_N \end{bmatrix} Δy0Δy1...ΔyN=x0f0(x ),x1f0(x ),x2f0(x ),...,xNf0(x )x0f1(x ),x1f1(x ),x2f1(x ),...,xNf1(x )...x0fM(x ),x1fM(x ),x2fM(x ),...,xNfM(x )Δx0Δx1...ΔxN
但是这边两个矩阵的形式有点类似,实质上还是有比较大的差别的,一个是状态系数的时间演化,另一个是变量的增量和自变量的增量之间的关系。后者就是一个典型的映射变换,所以需要一个Jacobian。相对应的,海森堡方程的矩阵是一个内涵的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值