题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
一:直观方法,时间复杂度超过O(n^2)
列举出数组的所有子数组并求出他们的和,一个长度为n 的数组,子数组的个数为n(n+1)/2,求出所有的和,最快需要O(n^2)的时间复杂度。
二、动态规划
F(i):以array[i]为末尾元素的子数组的和的最大值,子数组的元素的相对位置不变
F(i)=max(F(i-1)+array[i] , array[i])
res:所有子数组的和的最大值
res=max(res,F(i))
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
int res=array[0];
int f=array[0];
for(int i=1;i<array.size();i++){
f=max(f+array[i],array[i]);
res=max(f,res);
}
return res;
}
};
三、根据数组特点,时间复杂度O(n)
遍历一次数组,从头到尾累加数组中的每个数字。当累加和为负数时候,放弃最后一次加入的负数,保存此时的累加和,从下一个数字开始累加。按此方法更新替换最大和。
*如果存在数组为全负数的情况,该方法失效。数组全为负数时,子序列最大和为数组中最大的负数。设定一个int类型的flag=0。如果数组中有元素>0,则flag++;如果遍历数组完成后,flag仍然==0,则为全负数序列。
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
int len=array.size();
if(len==0) return 0;
int max=INT_MIN,sum=0,min=INT_MIN;
int flag=0;
for(int i=0;i<len;i++){
if(array[i]>=0) flag++;
if(array[i]<=0 && array[i]>=min)
min=array[i];
sum+=array[i];
if(sum<0) sum=0;
if(sum>max) max=sum;
}
return (flag?max:min);
}
};