面向个性化学习的数据挖掘方法

(持续更新ing)

面向个性化学习的数据挖掘方法,研究内容分为以下三大类

1、练习深度表征方法及应用

2、认知诊断分析(重点在于动态认知诊断分析)

在教育心理学中,认知诊断是利用学生做题的历史记录来诊断学生对知识点的熟练度的技术,传统的认知诊断模型分为一维连续模型和多维离散模型

2.1 项目反应理论(IRT)是典型的一维连续模型,通过变量表征学生,用逻辑函数来模拟学生正确解答问题的概率。

简单理解就是不再以考试的得分高低来判断学生的能力,而是以学生做对试题的难度高低来判断学生的能力大小,只有考生答对了较难的题目时,才认为考生具有较高的能力。如学生答对10道难度为1的题目,得分为1,答对一道难度为10的题目,能力值为10,

2.1.1 介绍IRT基本模型 ——  Rasch模型:

其中θ代表考生的能力,b代表题目的难度,x轴代表考生能力,y轴代表学生正确作答难度为b的题目的概率。

2.1.2 介绍目前最常用的IRT模型 —— 三参数项目反应函数3PL(Three-Parameter Logistic IRT)

其中θj代表学生j的能力值,{ai,bi,ci}分别代表练习题区分度,难度和猜测度,Xji = 1代表第j个学生完全答对第i道题目,P表示在已知学生的能力,试题的难度、区分度和猜测度下,Xji = 1 的概率大小

但项目反应理论仅关注学生宏观上的能力水平,即一道题目是否答对,但是题目相关联的知识点没有涉及到,因此很难刻画学生微观层面(即不同知识点)的能力水平。

2.1.3 DINA(Deterministic Input,Noisy And Gate 确定性技能诊断模型 )是典型的离散多维模型,用二进制向量来描述学生,可以考察学生是否掌握到试题相关的知识点。DINA模型进一步引入了 ”失误(slip)“和”猜测(guess)两个因素。

Xji假设学生j 答对练习题i 由两部分组成:(1) 掌握知识点且没有失误的概率 (2)没有掌握知识点但是猜对了的概率;

其中练习-知识Q矩阵通常由教育学专家进行标注,目前有研究提出可以使用CNN技术来对Q矩阵进行补充(补充原理后期补上),0表示学生对于这道试题的指定知识点没有掌握,1表示掌握;

K表示知识技能总数,{gi,si} 分别表示在练习i上的猜测因素,Π ji表示学生j对于练习i的掌握状态,由学生-知识向量θj和练习-知识向量qi共同影响,直观点理解就是当学生j完全掌握了习题i相关的知识点k时(θjk向量全为1),(一塔) Π ji 为1,否则为0。

 

项目认知诊断是假设学生的知识状态在一段时间内是固定不变的,因此上述方法通常只是用来分析某一时刻的测验成绩对于学生学习状态的评估,但是学习是个长期的过程,学生对于知识点的学习也是循序渐进的过程,因此如何对学生进行动态的学习行为建模是非常重要的,因此有研究提出知识追踪的概念,通过学生的历史学习数据,跟踪学生的知识水平变化。

2.2 传统知识追踪模型 —— 贝叶斯知识追踪模型(Baysian Knowledge Tracing BKT)

用含有隐变量的马尔可夫模型(HMM),将学生的知识状态假设为一组二进制变量来对学生知识点的变化进行追踪(近年来有两种代表性的技术:分解模型和神经网络)

P(L):是指学生没有学习过,对知识点K的先验概率,即没学习过却能掌握知识点K的概率;

P(Kt):假设学生对于知识点K在t时刻掌握状态,P(Kt)=0 表示没有掌握,P(Kt)=1表示掌握;

P(T): 表示学生知识状态的转移概率,如从P(Kt-1)转移到P(Kt)的概率未P(T);

P(G): 表示学生未掌握知识点,但却猜对的概率;

P(S):表示学生掌握知识点,却答错的概率

P(Xt): 学生在t时刻对于知识点K的作答结果,P(Xt)=0 表示学生t时刻对于知识点K作答结果未错误,P(Xt)表示学生t时刻对于知识点K的作答结果为正确;

对于学生u,知识点K,其中(2)表示,(u未学习掌握k的概率*u正确回答k的概率)/(u未学习掌握k的概率*u答对k的概率+u未学习且没有掌握k的概率*u猜对k的概率)

但实际上这个模型没有考虑到学生对于知识点的掌握实际上有个遗忘过程的,这里的模型表示一旦学生对于知识点掌握为1后就不会再减少了(很明显不符合现实情况),这边有很多相关研究进行了补充改正(如将学习参数P(T)分成了学习部分和遗忘部分,加入外部学习因素,如难度因素、学生个性因素等)。

2.3 FuzzyCDF

2.4基于矩阵分解的知识追踪

2.3 深度知识追踪模型(DKT)

将循环神经网络

2.5 动态键值对记忆网络:在知识追踪领域引入记忆增强神经网络。

  • 动态键值对记忆网络(Dynamic Key-Value Memory Networks for Knowledge Tracing,简写DKVMN),由香港中文大学的施行建于2017年提出的。根据BKT、DKT的优势和不足并且利用了记忆增强神经网络的方法,提出了动态键值对记忆网络(DKVMN)。

  • 它借鉴了记忆增强神经网络的思想,结合了BKT和DKT的优点,DKVMN 用一个静态矩阵 key 存储所有的知识点和一个动态矩阵 value 存储以及更新学生的知识状态。在DKVMN论文中,他们比较了DKVMN和DKT,以及一个复杂的BKT版本BKT+。他们发现DKVMN取得了优异的性能,是KT领域最先进的模型。除了改进性能之外,它还有其他几个优于LSTM的优点,包括防止过拟合、参数数量更少以及通过潜在概念自动发现类似的练习题。

  • 此外,Chaudhry R通过多任务学习将请求提示预测与知识追踪进行联合训练来提升DKVMN的性能。

3、个性化学习推荐策略

(不光是知识点的匹配,还有学生试题体验度的考虑,试题推荐的难度要适中,并且能调动学生的学习积极性),需要从练习题、学习者、学习机制三方面来进行研究

对于“练习深度表征方法及应用”来说,解决方法有基于语义理解的联系表征方法TACNN、针对逻辑练习题,有基于结构理解的练习表征NMS。练习题的特征有难度、区分度、知识范围等,如何对练习题目进行建模,计算机需要理解练习题的含义,进行有效的分析和表示对于 “动态认知诊断分析” 来说,解决方法有研究学习者在其学习过程中的动态认知诊断方法,影响因素有知识关联 (知识图谱量化) 因素和人脑记忆与遗忘因素(融合教育学的学习曲线和遗忘曲线来量化),

深度知识追总模型(DKT) : 将长短期记忆网络(LSTM)用于知识追踪任务,有很好的预测性能,不需要专家对习题进行知识点标注,大大节约了手工标注数据的人力成本。进阶搬得模型有记忆增强网络(MANN),如神经图灵机、端到端记忆网络,动态记忆网络

对于 “个性化学习推荐策略” 来说,不是只针对学生未掌握到的知识点推荐试题,而是考虑多种目标(复习与探索的平衡性,难度的平滑性,参与度等),可以将学生的在线学习的过程建模成马尔可夫决策过程,提出基于深度强化学习的个性化推荐算法。

 

 

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值