面向个性化学习的数据挖掘方法

本文探讨了面向个性化学习的数据挖掘方法,重点介绍了认知诊断分析和动态认知诊断技术,包括项目反应理论、确定性输入无噪声门模型(DINA)、贝叶斯知识追踪(BKT)及其改进模型DKVMN。同时,还讨论了个性化学习推荐策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(持续更新ing)

面向个性化学习的数据挖掘方法,研究内容分为以下三大类

1、练习深度表征方法及应用

2、认知诊断分析(重点在于动态认知诊断分析)

在教育心理学中,认知诊断是利用学生做题的历史记录来诊断学生对知识点的熟练度的技术,传统的认知诊断模型分为一维连续模型和多维离散模型

2.1 项目反应理论(IRT)是典型的一维连续模型,通过变量表征学生,用逻辑函数来模拟学生正确解答问题的概率。

简单理解就是不再以考试的得分高低来判断学生的能力,而是以学生做对试题的难度高低来判断学生的能力大小,只有考生答对了较难的题目时,才认为考生具有较高的能力。如学生答对10道难度为1的题目,得分为1,答对一道难度为10的题目,能力值为10,

2.1.1 介绍IRT基本模型 ——  Rasch模型:

其中θ代表考生的能力,b代表题目的难度,x轴代表考生能力,y轴代表学生正确作答难度为b的题目的概率。

2.1.2 介绍目前最常用的IRT模型 —— 三参数项目反应函数3PL(Three-Parameter Logistic IRT)

其中θj代表学生j的能力值,{ai,bi,ci}分别代表练习题区分度,难度和猜测度,Xji = 1代表第j个学生完全答对第i道题目࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值