python数据分析之numpy
上一篇: python数据分析之matplotlib
为什么要学习numpy
numpy有三大优点:
- 快速
- 方便
- 科学计算的基础库
1.什么是 numpy ?
一个在Python中做科学计算的基础库,重在数值计算,也是大部分Python科学计算库的基础库,多用于在大型、多维数组上执行数值运算
2. numpy 基础
2.1 numpy 创建数组(矩阵)
# coding=utf-8
import numpy as np
import random
# 使用numpy生成数组,得到ndarray的类型
t1 = np.array([1, 2, 3, ])
print(t1)
print(type(t1))
t2 = np.array(range(10))
print(t2)
print(type(t2))
t3 = np.arange(4, 10, 2)
print(t3)
print(type(t3))
print(t3.dtype)
print("*" * 100)
# numpy中的数据类型
t4 = np.array(range(1, 4), dtype="i1")
print(t4)
print(t4.dtype)
# numpy中的bool类型
t5 = np.array([1, 1, 0, 1, 0, 0], dtype=bool)
print(t5)
print(t5.dtype)
# 调整数据类型
t6 = t5.astype("int8")
print(t6)
print(t6.dtype)
# numpy中的小数
t7 = np.array([random.random() for i in range(10)])
print(t7)
print(t7.dtype)
t8 = np.round(t7, 2)
print(t8)
2.2 numpy 中常见的更多数据类型
常见的数据类型:int、float、string等等。
2.3 数据类型的操作
包括指定创建的数组的数据类型、修改数组的数据类型、修改浮点型的小数位数。
那么问题来了,python中如何保留固定位数的小数?
参考链接:https://blog.csdn.net/whjstudy1/article/details/79528720
2.4 数组的形状
主要包括:查看数组的形状**.shape**、修改数组形状**.reshape**
修改数组形状不会改变原来数组的形状
2.4 数组和数的计算