03_python数据分析之numpy

本文详细介绍了Python科学计算库numpy的基础知识,包括数组创建、数据类型操作、数组形状、计算、广播原则、轴的概念、读取数据、转置、索引切片、数值修改、布尔索引、三元运算、clip函数以及统计函数的应用。通过实例讲解了numpy在处理CSV数据、矩阵运算、数据统计等方面的功能,并提供了实战练习。
摘要由CSDN通过智能技术生成


上一篇: python数据分析之matplotlib
为什么要学习numpy
numpy有三大优点:

  • 快速
  • 方便
  • 科学计算的基础库

1.什么是 numpy ?

一个在Python中做科学计算的基础库,重在数值计算,也是大部分Python科学计算库的基础库,多用于在大型、多维数组上执行数值运算

2. numpy 基础

2.1 numpy 创建数组(矩阵)

在这里插入图片描述

# coding=utf-8
import numpy as np
import random

# 使用numpy生成数组,得到ndarray的类型
t1 = np.array([1, 2, 3, ])
print(t1)
print(type(t1))

t2 = np.array(range(10))
print(t2)
print(type(t2))

t3 = np.arange(4, 10, 2)
print(t3)
print(type(t3))

print(t3.dtype)
print("*" * 100)
# numpy中的数据类型

t4 = np.array(range(1, 4), dtype="i1")
print(t4)
print(t4.dtype)

# numpy中的bool类型
t5 = np.array([1, 1, 0, 1, 0, 0], dtype=bool)
print(t5)
print(t5.dtype)

# 调整数据类型
t6 = t5.astype("int8")
print(t6)
print(t6.dtype)

# numpy中的小数
t7 = np.array([random.random() for i in range(10)])
print(t7)
print(t7.dtype)

t8 = np.round(t7, 2)
print(t8)

2.2 numpy 中常见的更多数据类型

常见的数据类型:int、float、string等等。
在这里插入图片描述

2.3 数据类型的操作

包括指定创建的数组的数据类型、修改数组的数据类型、修改浮点型的小数位数。
在这里插入图片描述
那么问题来了,python中如何保留固定位数的小数?
参考链接:https://blog.csdn.net/whjstudy1/article/details/79528720

2.4 数组的形状

主要包括:查看数组的形状**.shape**、修改数组形状**.reshape**
在这里插入图片描述
在这里插入图片描述
修改数组形状不会改变原来数组的形状

2.4 数组和数的计算

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值