图像的形态学处理
数学形态学(Mathematical morphology)是一门 建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:腐蚀和膨胀、开运算和闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换等。
膨胀、腐蚀、开运算和闭运算是数学形态学的四个基本运算,它们在二值图像和灰度图像中各有特点。基于这些运算还可推导和组合成各种数学形态学实用算法,用它们可以进行图像形状和结构的分析和处理,包括图像分割、特征提取、边缘检测、图像滤波、图像增强和恢复等。有关数学形态学更多的介绍,可以查看百度词条:数学形态学。
简单来讲,形态学操作就是基于形状的一系列图像处理操作。opencv为进行图像的形态学变换提供了快捷,方便的函数,最基本的形态学操作有二种,他们是:膨胀和腐蚀(Dilation与Erosion)
膨胀与腐蚀能实现多种多样的功能,主要如下:
- 消除噪声
- 分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素。
- 寻找图像中的明显的极大值区域或极小值区域
- 求出图像的梯度
在进行腐蚀和膨胀的讲解之前,首先需要注意: 腐蚀和膨胀是对白色部分(高亮部分)而言的,不是黑色部分。 膨胀就是图像中的高亮部分进行膨胀,“邻域扩张”,效果图拥有比原图更大的高亮区域。腐蚀就是原图中高亮部分被腐蚀,“邻域被蚕食”,效果图拥有比原图更小的高亮区域。
图像的膨胀和腐蚀
定义结构元素是数学形态学处理的核心,在