粒子群PSO算法实验及其代码解释

  针对如下Rosenbrock函数(n=30),设计一种PSO算法进行求解。

m i n f ( x ) = ∑ i = 1 n − 1 100 ( x i + 1 − x i 2 ) 2 + ( x i − 1 ) 2 , x ∈ [ − 30 , 30 ] n min f(x) = \sum_{i=1}^{n-1}100(x_{i+1}-x_{i}^{2})^{2}+(x_{i}-1)^{2},x \in [-30,30]^{n} minf(x)=i=1n1100(xi+1xi2)2+(xi1)2x[30,30]n

代码解释

  建立目标函数:

function [ result ] = func_objValue( pop )
a=pop(:,[2:30]);% 所求解函数
b=pop(:,[1:29]);
c=ones(1,30);
objValue =100*sum((a-b.^2).^2,2)+sum((pop-c).^2,2);
result = objValue ;
end

  拟合

function [ result ] = func_fitness( pop )%控制函数正负性
objValue =  func_objValue(pop);
result  =objValue ;
end

  主函数。

clear all ;
close all ;
clc ;
N = 900 ; % 种群规模
D = 30 ; % 粒子维度
T = 1000 ; % 迭代次数
Xmax = 30 ;
Xmin = -30 ;
C1 =  2; %1.5 学习因子1
C2 = 2 ; %1.5 学习因子2
W = 0.75 ; %0.8 惯性权重
Vmax = 0.1 ; %10 最大飞行速度
Vmin = -0.1 ; %-10 最小飞行速度
popx = rand(N,D)*(Xmax-Xmin)+Xmin ; % 初始化粒子群的位置(粒子位置是一个D维向量)
popv = rand(N,D)*(Vmax-Vmin)+Vmin ; % 初始化粒子群的速度(粒子速度是一个D维度向量) 
% 初始化每个历史最优粒子
pBest = popx ; 
pBestValue = func_fitness(pBest) ; 
%初始化全局历史最优粒子
[gBestValue,index] = max(func_fitness(popx)) ;
gBest = popx(index,:) ;
for t=1:T
    for i=1:N
        % 更新个体的位置和速度
        popv(i,:) = W*popv(i,:)+C1*rand*(pBest(i,:)-popx(i,:))+C2*rand*(gBest-popx(i,:)) ;
        popx(i,:) = popx(i,:)+popv(i,:) ;
        % 边界处理,超过定义域范围就取该范围极值
        index = find(popv(i,:)>Vmax | popv(i,:)<Vmin);
        popv(i,index) = rand*(Vmax-Vmin)+Vmin ;
        index = find(popx(i,:)>Xmax | popx(i,:)<Xmin);
        popx(i,index) = rand*(Xmax-Xmin)+Xmin ;
        % 更新粒子历史最优
        if func_fitness(popx(i,:))<pBestValue(i)    
           pBest(i,:) = popx(i,:) ;
           pBestValue(i) = func_fitness(popx(i,:));
        end
       if pBestValue(i) < gBestValue
            gBest = pBest(i,:) ;
            gBestValue = pBestValue(i) ;
       end
    end
    % 每代最优解对应的目标函数值
    tBest(t) = func_objValue(gBest); 
end
figure
plot(tBest);
xlabel('迭代次数') ;
ylabel('适应度值') ;
title('适应度进化曲线') ;

运行结果

运行结果文档示意图

  完整代码,及其文档 后台回复:PSO。

我的微信公众号名称:小小何先生
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值