这里写自定义目录标题
大家好。在本次介绍性课程中,我将介绍一些基本的小波概念。我将主要使用一维示例,但相同的概念也可以应用于图像。首先,我们回顾一下什么是小波。现实世界的数据或信号经常表现出缓慢变化的趋势或瞬态波动。另一方面,图像具有被边缘或对比度突然变化中断的平滑区域。**这些突然的变化通常是数据中最有趣的部分,无论是在感知上还是在它们提供的信息方面。傅里叶变换是数据分析的强大工具。然而,它并不能有效地表示突变。**其原因是傅立叶变换将数据表示为正弦波之和,这些正弦波在时间或空间上不局域化。这些正弦波永远振荡。因此,为了准确分析具有突变的信号和图像,我们需要使用一类在时间和频率上很好地本地化的新函数:这将我们带到了小波的主题。小波是一种快速衰减、均值为零的波状振荡。与延伸到无穷大的正弦曲线不同,小波的存在时间是有限的。小波有不同的大小和形状。以下是一些众所周知的。各种小波的可用性是小波分析的关键优势。
要选择正确的小波,您需要考虑使用它的应用程序。我们将在随后的会议中更详细地讨论这一点。现在,让我们关注两个重要的小波变换概念:缩放和平移。让我们从缩放开始。假设您有一个信号 PSI(t)。缩放是指在时间上拉伸或收缩信号的过程,可以使用这个方程[在屏幕上]来表达