力扣55 跳跃游戏

本文介绍了两种方法解决跳跃游戏问题,一种是贪心算法,通过不断更新能跳到的最远距离来判断是否能到达终点;另一种是动态规划,建立dp数组记录每个位置能跳到的最远距离,并从前往后计算,最后检查是否能到达终点。这两种方法都是优化的解决方案,旨在提高算法效率。
摘要由CSDN通过智能技术生成

方法一:贪心

思路:

如果某一个作为起跳点的格子可以跳跃的距离是 3,那么表示后面 3 个格子都可以是起跳点
可以对每一个能作为起跳点的格子都尝试跳一次,把能跳到最远的距离不断更新
如果可以一直跳到最后,就成功了

public static boolean canJump(int[] nums){
        if(nums==null||nums.length==0) return false;
        int max=0;//能跳的最远距离
        for(int i=0;i<=max;i++){
            max=Math.max(max,i+nums[i]);
            if(max>=nums.length-1){
                return true;
            }
        }
        return false;
    }

将代码进行优化:

dp[i]表示index=i时可以跳的最远距离。

dp[i]的值是dp[i-1]可以跳的最远距离-1与以该下标为起点所能跳的最远距离取最大值

每次循环开始前需要判断dp[i-1]是否为0,因为如果为0就跳不到当前位置 i

public static boolean canJump(int[] nums){
        int len=nums.length;
        int lastDp=nums[0];
        for(int i=1;i<len;i++){
            if(lastDp==0) return false;
            lastDp=Math.max(lastDp-1,nums[i]);
        }
        return true;
    }

方法二:动态规划

public boolean canJump(int[] nums) {
        boolean[] dp=new boolean[nums.length];
        dp[0]=true;
        for(int i=1;i<nums.length;i++){
            for(int j=0;j<i;j++){
                if(dp[j]&&nums[j]+j>=i){
                    dp[i]=true;
                    break;
                }
            }
        }
        return dp[nums.length-1];
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值