力扣31 下一个排列

思路:如果整个数字都是降序的,说明已经到最后一个排序了,因此下一个排列就是Arrays.sort(nums),因此需要找升序的两个相邻数字,找到后将右侧的数字排序,找到比nums[i-1]大的数字,交换位置,返回这个结果。

public void nextPermutation(int[] nums) {
        int len=nums.length;
        for(int i=len-1;i>0;i--){
            if(nums[i]>nums[i-1]){
                Arrays.sort(nums,i,len);
                for(int j=i;j<len;j++){
                    if(nums[j]>nums[i-1]){
                        int temp=nums[j];
                        nums[j]=nums[i-1];
                        nums[i-1]=temp;
                        return;
                    }
                }
            }
        }
        Arrays.sort(nums);
        return;
    }

力扣一个在线编程平台,提供了大量的算法题目,可以帮助程序员提高算法能力。回溯算法是一种搜索算法,它通过不断地尝试所有可能的解来求解问题。在回溯算法中,我们首先定义一个解空间,然后从解空间中搜索所有可能的解,直到找到符合要求的解为止。回溯算法通常用于求解组合问题、排列问题、子集问题等。 在 Java 中实现回溯算法,通常需要定义一个递归函数来搜索解空间。在递归函数中,我们首先判断当前状态是否符合要求,如果符合要求,则将当前状态加入到解集中;否则,我们继续搜索下一个状态。在搜索下一个状态时,我们需要对当前状态进行一些修改,然后递归调用自身来搜索下一个状态。当搜索完所有可能的状态后,我们需要回溯到上一个状态,继续搜索其他可能的状态。 以下是回溯算法的一般步骤: 1. 定义解空间:确定问题的解空间,并定义一个数据结构来表示解空间中的每个状态。 2. 确定约束条件:确定哪些状态是合法的,并定义一个函数来判断当前状态是否符合要求。 3. 确定搜索策略:确定搜索解空间的顺序,并定义一个函数来生成下一个状态。 4. 搜索解空间:使用递归函数搜索解空间,如果当前状态符合要求,则将其加入到解集中;否则,继续搜索下一个状态。 5. 回溯:当搜索完所有可能的状态后,回溯到上一个状态,继续搜索其他可能的状态。 以下是一个力扣题目的回溯算法 Java 实现示例: ``` class Solution { List<List<Integer>> res = new ArrayList<>(); List<Integer> path = new ArrayList<>(); public List<List<Integer>> subsets(int[] nums) { dfs(nums, 0); return res; } private void dfs(int[] nums, int start) { res.add(new ArrayList<>(path)); for (int i = start; i < nums.length; i++) { path.add(nums[i]); dfs(nums, i + 1); path.remove(path.size() - 1); } } } ``` 该算法用于求解给定数组的所有子集。在递归函数中,我们首先将当前状态加入到解集中,然后从当前位置开始搜索下一个状态。在搜索下一个状态时,我们将当前元素加入到路径中,并递归调用自身来搜索下一个状态。当搜索完所有可能的状态后,我们需要回溯到上一个状态,继续搜索其他可能的状态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值