一、向量的概念及其运算
1.1 向量的概念
在空间中,我们把具有大小和方向的量叫做空间向量(space vector),向量的大小叫做向量的长度或模(Modulus)。规定长度为0的向量叫做零向量(zero vector),记为 0 \boldsymbol{0} 0,零向量的起点和终点重合,方向是任意的;模为1的向量叫做单位向量(Unit vector),与向量 a \boldsymbol{a} a长度相等而方向相反的向量,称为 a \boldsymbol{a} a的相反向量,记为 − a -\boldsymbol{a} −a。
1.2 向量的夹角
设有两个非零向量 a \boldsymbol{a} a, b \boldsymbol{b} b,在空间中任取一点 O O O,作 O A → = a \overrightarrow{OA}=\boldsymbol{a} OA=a, O B → = b \overrightarrow{OB}=\boldsymbol{b} OB=b,规定不超过 π \pi π的 ∠ A O B \angle{AOB} ∠AOB为向量 a \boldsymbol{a} a, b \boldsymbol{b} b的夹角。将两个平行向量的起点放在同一个点时,它们的终点和起点应该在同一条直线上。因此两向量平行也叫做两向量共线。类似的,设有 k k k个向量,当把他们的起点放在同一个点时,如果 k k k个终点和公共起点在同一个平面上,就称这 k k k个向量共面。
1.3 线性运算
线性运算包括加减法和数乘运算。
-
加减法
向量的运算几何上符合三角形法则和平行四边形法则。
交换律: a + b = b + a \boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a} a+b=b+a
结合律: ( a + b ) + c = a + ( b + c ) (\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c}) (a+b)+c=a+(b+c) -
数乘运算
向量 a \boldsymbol{a} a与实数 λ \lambda λ的乘积记作 λ a \lambda\boldsymbol{a} λa,规定 λ a \lambda\boldsymbol{a} λa为一个向量,它的模
∣ λ a ∣ = ∣ λ ∣ ∣ a ∣ (1) \tag{1} |\lambda\boldsymbol{a}|=|\lambda||\boldsymbol{a}| ∣λa∣=∣λ∣∣a∣(1)结合律: λ ( μ a ) = μ ( λ a ) = ( λ μ ) a \lambda(\mu\boldsymbol{a})=\mu(\lambda\boldsymbol{a})=(\lambda\mu)\boldsymbol{a} λ(μa)=μ(λa)=(λμ)a
分配律: ( λ + μ ) a = λ a + μ a λ ( a + b ) = λ a + λ b (\lambda+\mu)\boldsymbol{a}=\lambda\boldsymbol{a}+\mu\boldsymbol{a}\quad \lambda(\boldsymbol{a}+\boldsymbol{b})=\lambda\boldsymbol{a}+\lambda\boldsymbol{b} (λ+μ)a=λa+μaλ(a+b)=λa+λb -
定理一:设向量 a ≠ 0 \boldsymbol{a}\ne\boldsymbol{0} a=0,则向量 b \boldsymbol{b} b平行于 a \boldsymbol{a} a的充分必要条件是:存在唯一实数 λ \lambda λ使得 b = λ a \boldsymbol{b}=\lambda\boldsymbol{a} b=λa。这个定理建立数轴的理论依据,起点相同方向相同的向量可以和一个实数一一对应。
-
定理二:设向量 a \boldsymbol{a} a和 b \boldsymbol{b} b不共线,向量 p \boldsymbol{p} p与 a \boldsymbol{a} a, b \boldsymbol{b} b共面的充要条件是存在实数对 ( x , y ) (x,y) (x,y)使: p = x a + y b \boldsymbol{p}=x\boldsymbol{a}+y\boldsymbol{b} p=xa+yb成立。
-
定理三:(待补充)
空间中任意两个向量都是共面的,三个向量则不一定。平行于同一个平面的向量共面向量(coplanar vectors)。
1.4 数量积(inner product)运算
已知两个非零向量
a
\boldsymbol{a}
a和
b
\boldsymbol{b}
b,则
∣
a
∣
∣
b
∣
cos
<
a
,
b
>
|\boldsymbol{a}||\boldsymbol{b}|\cos<\boldsymbol{a},\boldsymbol{b}>
∣a∣∣b∣cos<a,b>叫做
a
\boldsymbol{a}
a和
b
\boldsymbol{b}
b的数量积,记作
a
⋅
b
\boldsymbol{a}\cdot\boldsymbol{b}
a⋅b,即:
a
⋅
b
=
∣
a
∣
∣
b
∣
cos
<
a
,
b
>
(2)
\boldsymbol{a}\cdot\boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}|\cos<\boldsymbol{a},\boldsymbol{b}>\tag{2}
a⋅b=∣a∣∣b∣cos<a,b>(2)对于零向量因为没有夹角的定义,进行了规定:零向量与任何向量的数量积都为0。特别的:
a
⋅
a
=
∣
a
∣
∣
a
∣
cos
<
a
,
a
>
=
∣
a
∣
2
\boldsymbol{a}\cdot\boldsymbol{a}=|\boldsymbol{a}||\boldsymbol{a}|\cos<\boldsymbol{a},\boldsymbol{a}>=|\boldsymbol{a}|^2
a⋅a=∣a∣∣a∣cos<a,a>=∣a∣2。如果向量
a
≠
0
\boldsymbol{a}\ne\boldsymbol{0}
a=0,
∣
b
∣
cos
<
a
,
b
>
|\boldsymbol{b}|\cos<\boldsymbol{a},\boldsymbol{b}>
∣b∣cos<a,b>这个标量是做向量
b
\boldsymbol{b}
b在向量
a
\boldsymbol{a}
a上的投影。记作:
P
r
j
a
b
=
∣
b
∣
cos
<
a
,
b
>
(3)
Prj_{\boldsymbol{a}}\boldsymbol{b}=|\boldsymbol{b}|\cos<\boldsymbol{a},\boldsymbol{b}>\tag{3}
Prjab=∣b∣cos<a,b>(3)式(2)可以写作:
a
⋅
b
=
∣
b
∣
P
r
j
a
b
(4)
\boldsymbol{a}\cdot\boldsymbol{b}=|\boldsymbol{b}|Prj_{\boldsymbol{a}}\boldsymbol{b} \tag{4}
a⋅b=∣b∣Prjab(4)这也就是说,一个向量在另一个向量的向量积等于该向量的模与投影的乘积。在几何上投影,两个同起点的向量,实际就是过
b
\boldsymbol{b}
b终点且是
a
\boldsymbol{a}
a所有垂直面的交点与起点的连线。
向量积还满足以下运算律:
(
λ
a
)
⋅
b
=
λ
(
a
⋅
b
)
a
b
=
b
a
a
⋅
(
b
+
c
)
=
a
⋅
b
+
a
⋅
c
(5)
(\lambda\boldsymbol{a})\cdot\boldsymbol{b}=\lambda(\boldsymbol{a}\cdot\boldsymbol{b})\\ \boldsymbol{a}\boldsymbol{b}=\boldsymbol{b}\boldsymbol{a}\\ \boldsymbol{a}\cdot(\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a}\cdot\boldsymbol{b}+\boldsymbol{a}\cdot\boldsymbol{c}\tag{5}
(λa)⋅b=λ(a⋅b)ab=baa⋅(b+c)=a⋅b+a⋅c(5)
如果两个向量的数量积为0是两个向量垂直的充分必要条件。
1.5 向量积
设向量
c
\boldsymbol{c}
c由两个向量
a
\boldsymbol{a}
a、
b
\boldsymbol{b}
b按以下方式定出:
c
\boldsymbol{c}
c的模
∣
c
∣
=
∣
a
∣
∣
b
∣
sin
θ
|\boldsymbol{c}|=|\boldsymbol{a}||\boldsymbol{b}|\sin\theta
∣c∣=∣a∣∣b∣sinθ,
θ
\theta
θ为
a
\boldsymbol{a}
a、
b
\boldsymbol{b}
b间的夹角;
c
\boldsymbol{c}
c的方向垂直于
a
\boldsymbol{a}
a、
b
\boldsymbol{b}
b所决定的平面(与
a
\boldsymbol{a}
a、
b
\boldsymbol{b}
b都垂直),
c
\boldsymbol{c}
c的方向由右手规则从
a
\boldsymbol{a}
a转向
b
\boldsymbol{b}
b决定,向量
c
\boldsymbol{c}
c叫做
a
\boldsymbol{a}
a与
b
\boldsymbol{b}
b的向量积,即:
c
=
a
×
b
\boldsymbol{c}=\boldsymbol{a}\times\boldsymbol{b}
c=a×b
右手法则最重要的是确定其方向,以 c = a × b \boldsymbol{c}=\boldsymbol{a}\times\boldsymbol{b} c=a×b为例, c \boldsymbol{c} c的方向是四指沿着 a \boldsymbol{a} a的正方向,以不超过180度的角度弯向 b \boldsymbol{b} b的反方向,拇指方向即为叉积的方向。
向量积有以下性质:
- b × a = − a × b \boldsymbol{b}\times\boldsymbol{a}=-\boldsymbol{a}\times\boldsymbol{b} b×a=−a×b
- ( a + b ) × c = a × c + b × c (\boldsymbol{a}+\boldsymbol{b})\times\boldsymbol{c}=\boldsymbol{a}\times\boldsymbol{c}+\boldsymbol{b}\times\boldsymbol{c} (a+b)×c=a×c+b×c
- ( λ a ) × b = a × ( λ b ) = λ ( a × b ) (\lambda\boldsymbol{a})\times\boldsymbol{b}=\boldsymbol{a}\times(\lambda\boldsymbol{b})=\lambda(\boldsymbol{a}\times\boldsymbol{b}) (λa)×b=a×(λb)=λ(a×b)
两向量平行的充要条件是 a × b = 0 \boldsymbol{a}\times\boldsymbol{b}=\boldsymbol{0} a×b=0
1.6 混合积
先向量积后数量积。
[
a
b
c
]
=
(
a
×
b
)
⋅
c
[\boldsymbol{a}\quad\boldsymbol{b}\quad\boldsymbol{c}]=(\boldsymbol{a}\times\boldsymbol{b})\cdot\boldsymbol{c}
[abc]=(a×b)⋅c