解析几何
文章平均质量分 84
解析几何、基础知识及其可视化。
我什么都布吉岛
Keep writing,Keep thinking!
展开
-
坐标系类型及其简介
一、坐标系1.1 平面直角坐标系通过直接坐标系,平面上的点和坐标系(有序实数对)、曲线与方程建立了联系,从而实现了数与形结合。如上图,每一个点对应坐标系上的一个有序实数对;方程y=x2x∈[−2,2]y=x^2 \quad x\in[-2,2]y=x2x∈[−2,2]对应上述图像。1.2 平面直角坐标系中的伸缩变换定义:设点P(x,y)是平面直角坐标系中的任意一点,在变换ϕ:{x′=λ⋅xλ>0y′=μ⋅yμ>0\phi:\left\{\begin{aligned}&原创 2020-11-09 14:02:04 · 5743 阅读 · 1 评论 -
曲线的参数方程简介
一、曲线的参数方程1.1 参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,yx,yx,y都是某个变数ttt的函数{x=f(t)y=g(t)(1)\left\{\begin{aligned}&x=f(t)\\&y=g(t)\end{aligned}\right.\tag{1}{x=f(t)y=g(t)(1)并且对于每个ttt的允许值,由方程组(1)所确定的点M(x,y)M(x,y)M(x,y)都在这条曲线上,那么方程组(1)就称为这条曲线的参数方程原创 2020-11-09 14:02:59 · 9016 阅读 · 1 评论 -
空间向量及其运算
平面内任意向量p\boldsymbol{p}p都可以用两个不共线的向量a\boldsymbol{a}a b\boldsymbol{b}b来表示,这是平面向量的基本定理。类似的我们定义,如果三个向量不共面,那么对空间中的任一向量p\boldsymbol{p}p,存在有序实数组{x,y,z}\{x,y,z\}{x,y,z}使得p=xa+yb+zc\boldsymbol{p}=x\boldsymbol{a}+y\boldsymbol{b}+z\boldsymbol{c}p=xa+yb+zc,我们把向量{a,b,.原创 2020-11-09 13:55:01 · 10323 阅读 · 0 评论 -
向量代数
一、向量的概念及其运算1.1 向量的概念在空间中,我们把具有大小和方向的量叫做空间向量(space vector),向量的大小叫做向量的长度或模(Modulus)。规定长度为0的向量叫做零向量(zero vector),记为0\boldsymbol{0}0,零向量的起点和终点重合,方向是任意的;模为1的向量叫做单位向量(Unit vector),与向量a\boldsymbol{a}a长度相等而方向相反的向量,称为a\boldsymbol{a}a的相反向量,记为−a-\boldsymbol{a}−a。1原创 2020-11-09 13:55:16 · 3845 阅读 · 0 评论 -
定比分点公式
和两点间的中点公式一样,定比分点公式(Section Formula)是一种给出中点坐标的公式。定比分点应该理解为:“固定比例分割点的坐标公式”,中点公式是他的一种特殊情况。我们可以用它寻找三角形的内心、质心和外心。他是在一个线段中按照固定比例将线段分为两部分。在二维坐标系下:截点公式的翻译其实更加好理解,就是一个点将线段截成两段。该公式可以告知任何一个固定比例的点在坐标系的位置。...原创 2020-11-09 11:12:42 · 9640 阅读 · 0 评论