11矩阵空间、秩1矩阵和小世界图

上一节课,将向量的概念扩展到了矩阵。

一、矩阵空间

矩阵空间是一个子空间吗?是的,数乘和加法等运算后仍然是一个矩阵。所有 3 × 3 3\times3 3×3的矩阵 M M M构成了一个类似于 R 3 R^3 R3的空间,那么这个矩阵空间也将会有子空间,比如:

  • 对称矩阵 S S S
  • 上三角矩阵 U U U

根据定义很容易知道这些矩阵是线性封闭的。

1.1 矩阵的基和维数

一个矩阵是由那些基本的矩阵组成的?

[ 1 0 0 0 0 0 0 0 0 ] [ 0 1 0 0 0 0 0 0 0 ] [ 0 0 1 0 0 0 0 0 0 ] ⋯ [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix} 1&0&0\\0&0&0\\0&0&0 \end{bmatrix}\quad\begin{bmatrix} 0&1&0\\0&0&0\\0&0&0 \end{bmatrix}\quad\begin{bmatrix} 0&0&1\\0&0&0\\0&0&0 \end{bmatrix}\cdots\begin{bmatrix} 0&0&0\\0&0&0\\0&0&1 \end{bmatrix} 100000000 000100000 000000100 000000001
上面这些矩阵满足:

  • 线性无关。上述任何一个矩阵都能不能用其他矩阵线性表示,是独一无二的;
  • 能够扩展至整个矩阵空间。

所以上面的九个矩阵是矩阵 3 × 3 3\times3 3×3的矩阵 M M M的一组基,维数是9。

对于 3 × 3 3\times3 3×3的矩阵 S S S,它的一组基为:
[ 1 0 0 0 0 0 0 0 0 ] [ 0 1 0 1 0 0 0 0 0 ] [ 0 0 0 0 1 0 0 0 0 ] [ 0 0 1 0 0 0 1 0 0 ] [ 0 0 0 0 0 1 0 1 0 ] [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix} 1&0&0\\0&0&0\\0&0&0 \end{bmatrix}\quad \begin{bmatrix} 0&1&0\\1&0&0\\0&0&0 \end{bmatrix}\quad \begin{bmatrix} 0&0&0\\0&1&0\\0&0&0 \end{bmatrix}\quad \begin{bmatrix} 0&0&1\\0&0&0\\1&0&0 \end{bmatrix}\quad \begin{bmatrix} 0&0&0\\0&0&1\\0&1&0 \end{bmatrix}\quad \begin{bmatrix} 0&0&0\\0&0&0\\0&0&1 \end{bmatrix} 100000000 010100000 000010000 001000100 000001010 000000001
一个 3 × 3 3\times3 3×3矩阵 U U U的一组基为:
[ 1 0 0 0 0 0 0 0 0 ] [ 0 1 0 0 0 0 0 0 0 ] [ 0 0 1 0 0 0 0 0 0 ] [ 0 0 0 0 1 0 0 0 0 ] [ 0 0 0 0 0 1 0 0 0 ] [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix} 1&0&0\\0&0&0\\0&0&0 \end{bmatrix}\quad \begin{bmatrix} 0&1&0\\0&0&0\\0&0&0 \end{bmatrix}\quad \begin{bmatrix} 0&0&1\\0&0&0\\0&0&0 \end{bmatrix}\quad \begin{bmatrix} 0&0&0\\0&1&0\\0&0&0 \end{bmatrix}\quad \begin{bmatrix} 0&0&0\\0&0&1\\0&0&0 \end{bmatrix}\quad \begin{bmatrix} 0&0&0\\0&0&0\\0&0&1 \end{bmatrix} 100000000 000100000 000000100 000010000 000000010 000000001
3 × 3 3\times3 3×3对角矩阵 D D D的一组基为:
[ 1 0 0 0 0 0 0 0 0 ] [ 0 0 0 0 1 0 0 0 0 ] [ 0 0 0 0 0 0 0 1 0 ] \begin{bmatrix} 1&0&0\\0&0&0\\0&0&0 \end{bmatrix}\quad \begin{bmatrix} 0&0&0\\0&1&0\\0&0&0 \end{bmatrix}\quad \begin{bmatrix} 0&0&0\\0&0&0\\0&1&0 \end{bmatrix} 100000000 000010000 000001000
注意到 S ∩ U = D S\cap U=D SU=D,两个子空间的交集为一个对角矩阵 D D D,维数 d i m ( S ) + d i m ( U ) = d i m ( S ∩ U ) dim(S)+dim(U)=dim(S\cap U) dim(S)+dim(U)=dim(SU);正如我们在向量中不研究并集( S ∪ U S\cup U SU)一样,因为这没有意义,随便选两个向量结果将会超出原来的范围,这不符合子空间的定义;但是我们会定义 S + U S+U S+U集合,他表示 S S S U U U的线性组合,这个线性组合恰好能够布满整个矩阵空间。注意到一个有趣的结论:
d i m ( S ) + d i m ( U ) = d i m ( S ∩ U ) + d i m ( S + U ) 6 + 6 = 3 + 9 \begin{aligned} dim(S)+dim(U)&=dim(S\cap U)+dim(S+U)\\ 6+6&=3+9 \end{aligned} dim(S)+dim(U)6+6=dim(SU)+dim(S+U)=3+9
两个子空间的维数和等于交集加上其加集维度的和。

1.2 微分方程

在线性代数中的许多概念在数学领域都是通用的,比如说微分方程:
d 2 y d x 2 + y = 0 (1) \frac{d^2y}{dx^2}+y=0\tag{1} dx2d2y+y=0(1)
这个微分方程有两个特解: y 1 = sin ⁡ x y_1=\sin x y1=sinx y 2 = cos ⁡ x y_2=\cos x y2=cosx,所有解都是这两个特解的线性组合:
y c o m p l e t e = c 1 cos ⁡ x + c 2 sin ⁡ x (2) y_{complete}=c_1\cos x+c_2\sin x\tag{2} ycomplete=c1cosx+c2sinx(2)
那么这个微分方程的一组基就是 y 1 y_1 y1 y 2 y_2 y2,线性组合系数为零空间,其特解个数等于2,也就是说他们的解空间维数为。其实举这个例子是为了说明子空间、维数、基这些概念应该有更加广泛的理解,比如这里的基就是一组函数,而不是具体的数字。

二、秩1矩阵

2.1 秩1矩阵是其他矩阵的积木

2 × 3 2\times 3 2×3矩阵 A A A

A = [ 1 4 5 2 8 10 ] A=\begin{bmatrix} 1&4&5\\ 2&8&10 \end{bmatrix} A=[1248510]
其秩为1。这种秩为1的矩阵容易写成行和列的矩阵乘法:
A = [ 1 2 ] [ 1 4 5 ] A=\begin{bmatrix} 1\\2 \end{bmatrix}\begin{bmatrix}1&4&5 \end{bmatrix} A=[12][145]
事实上,所有秩为1的矩阵都可以写成:
A = u v T A=uv^T A=uvT
在之后的学习里,我们会知道这种矩阵的特点:

  • 行列式简单
  • 特征值特点明显(= =完全忘了,学了才知道)

这种秩为1的矩阵就像是积木一样搭建起了所有矩阵,结合一开始矩阵乘法这一节的容易理解。比方说我们有一个 5 × 17 5\times17 5×17的矩阵,秩为4,他就可以用四个秩为1的矩阵表示出来,秩是多少就能用多少秩为1的矩阵搭建。

思考:四个同型的、秩相同的矩阵相加后的矩阵,其秩是否会改变?肯定会,因为你不确定哪个主元被消除了,这也就意味着,这样的(同秩、同型)矩阵集合并不能构成子空间。

三、小世界图

Graph={nodes,edges}

在这里插入图片描述
介绍了图的节点和边的概念。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值