简介
查看U-Net论文请点击此处。U-Net最初是用于细胞识别的,针对少量的训练数据,作者通过数据增强等方式,实现了很好的效果,获得了比赛冠军,U-Net经过修改也可以用于其他用途。
U-Net论文作者提供了caffe的版本,github上也已经有人提供了pytorch的版本,但是经过了修改,本文提供的实现忠于论文的描述,没有研究过作者提供的版本,所以不保证本实现和作者的实现足够接近,仅是个人对论文的理解,如有错误,还望指正,欢迎留言,另外,由于没有对应的训练数据,所以没有严格的验证。
正文
代码如下, 代码后面有说明
import torch
import torch.nn as nn
from torchsummary import summary
class MyUnetDown(nn.Module):
def __init__(self, in_channels):
super(MyUnetDown, self).__init__()
self.down_and_conv = nn.Sequential(
nn.MaxPool2d(
kernel_size = 2,
stride=2,
),
nn.Conv2d(
in_channels = in_channels,
out_channels = in_channels*2,
kernel_size = 3,
stride=1,
padding=0, # 论文中说unpadded convolutions
bias=False,
),
nn.ReLU(),
nn.Conv2d(
in_channels = in_channels*2,
out_channels = in_channels*2,
kernel_size = 3,
stride=1,
padding=0,
bias=False,
),
nn.ReLU(),
) # 这个地方如果不小心写了个逗号,就玩完了!!!
def forward(self, x):
return self.down_and_conv(x)
class MyUnetUp(nn.Module):
def __init__(self, in_channels, cropsize):
super(MyUnetUp, self).__init__()
# 和最大池化对应,如果遇到奇数,没有padding最大池化会丢弃多余的,所以这里out_padding=0
# 最大池化大小(形状)上相当于卷积kernel=2, stride=2, 这里是大小(形状)上的逆过程
# 参数和对应的Conv2d相同, stride=2 卷积回去有歧义, out_padding区分歧义,这里设置为0,对应偶数
# 详情参见ConvTranspose2d文档以及文档中给的ConvTranspose2d的图示链接
#
# ConvTranspose2d根据参数 dilation * (kernel_size - 1) - padding计