U-Net的pytorch实现

本文详细介绍了U-Net网络结构,包括其在细胞识别任务中的应用和作者的PyTorch实现。文章阐述了网络的对称结构,下采样和上采样的过程,并讨论了如何处理输入和输出尺寸的问题。此外,还提到了训练时的数据处理技巧,如输入图像的大小选择和边缘处理,以及验证阶段的注意事项。尽管没有提供严格的验证结果,但文章为理解U-Net网络提供了一定的参考。
摘要由CSDN通过智能技术生成

简介

查看U-Net论文请点击此处。U-Net最初是用于细胞识别的,针对少量的训练数据,作者通过数据增强等方式,实现了很好的效果,获得了比赛冠军,U-Net经过修改也可以用于其他用途。
U-Net论文作者提供了caffe的版本,github上也已经有人提供了pytorch的版本,但是经过了修改,本文提供的实现忠于论文的描述,没有研究过作者提供的版本,所以不保证本实现和作者的实现足够接近,仅是个人对论文的理解,如有错误,还望指正,欢迎留言,另外,由于没有对应的训练数据,所以没有严格的验证。

正文

代码如下, 代码后面有说明

import torch
import torch.nn as nn
from torchsummary import summary

class MyUnetDown(nn.Module):
    def __init__(self, in_channels):
        super(MyUnetDown, self).__init__()
        
        self.down_and_conv = nn.Sequential(
            nn.MaxPool2d(
                kernel_size = 2,
                stride=2,
            ),
            nn.Conv2d(
                in_channels = in_channels,
                out_channels = in_channels*2,
                kernel_size = 3,
                stride=1,
                padding=0, # 论文中说unpadded convolutions
                bias=False,
            ),
            nn.ReLU(),
            nn.Conv2d(
                in_channels = in_channels*2,
                out_channels = in_channels*2,
                kernel_size = 3,
                stride=1,
                padding=0,
                bias=False,
            ),
            nn.ReLU(),
        ) # 这个地方如果不小心写了个逗号,就玩完了!!!
        
    def forward(self, x):
        return self.down_and_conv(x)
    

class MyUnetUp(nn.Module):
    def __init__(self, in_channels, cropsize):
        super(MyUnetUp, self).__init__()
        
        # 和最大池化对应,如果遇到奇数,没有padding最大池化会丢弃多余的,所以这里out_padding=0
        # 最大池化大小(形状)上相当于卷积kernel=2, stride=2, 这里是大小(形状)上的逆过程
        # 参数和对应的Conv2d相同, stride=2 卷积回去有歧义, out_padding区分歧义,这里设置为0,对应偶数
        # 详情参见ConvTranspose2d文档以及文档中给的ConvTranspose2d的图示链接
        #
        # ConvTranspose2d根据参数 dilation * (kernel_size - 1) - padding计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值