尖端放电

博客围绕尖端放电展开,先说明尖端电荷密度比曲率低的地方高,接着通过半径不同的圆用导体连接的案例进行论证,得出曲率最大半径最小处电荷密度最高,还指出可由高斯定律推出电荷密度与电场强度的关系,即局部电荷分布决定电场。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

1 说明

在这里插入图片描述
有个如图形状的物体,尖端放电要说明的就是尖端1的电荷密度比曲率低的二高。接下来,会通过案例一步步说明

2论证

在这里插入图片描述
有半径分别为a,b的圆中间用假设几十米的导体连接,则AB为等势体
让他们带电,直到A分布为 Q A Q_{A} QA,B为 Q B Q_{B} QB,A的电势和B的存在没有关系,因为两者相距几十米。因为B相距非常远,所以从无穷远地方带电荷靠近到达A点电荷做的功与B无关,同理B也与A无关所以A,B的电势为
V A = Q A 4 π ξ 0 R A V_{A}=\frac{Q_{A}}{4\pi\xi_{0}R_{A}} VA=4πξ0RAQA
V B = Q B 4 π ξ 0 R B V_{B}=\frac{Q_{B}}{4\pi\xi_{0}R_{B}} VB=4πξ0RBQB
由等势体 V A V_{A} VA= V B V_{B} VB则可以得到
Q A R A = Q A R A \frac{Q_{A}}{R_{A}}=\frac{Q_{A}}{R_{A}} RAQA=RAQA
若是B是A半径的五倍,B上的电荷将是A上的五倍,但是他的表面积大了25倍,电荷密度为电荷除表面积,可以看出A的电荷密度是B的五倍
σ = Q 4 π R 2 \sigma=\frac{Q}{4 \pi R^{2}} σ=4πR2Q
可以推出曲率最大半径最小的地方电荷密度最高,这也意为这哪里电场强度最高,可以由高斯定律推出
在这里插入图片描述
下面是高斯定律的示意图,可以假设近似非常矮紧贴这表面。则电通量为AE,可写出公式
A E = σ A ε 0 A E=\frac{\sigma A}{\varepsilon_{0}} AE=ε0σA

当你有一个导体,你知道他的局部电荷分布你就会知道电场,既然电荷密度最高,即使他整体是一个等势体尖端的电场也会比较高

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值