1 说明
有个如图形状的物体,尖端放电要说明的就是尖端1的电荷密度比曲率低的二高。接下来,会通过案例一步步说明
2论证
有半径分别为a,b的圆中间用假设几十米的导体连接,则AB为等势体
让他们带电,直到A分布为
Q
A
Q_{A}
QA,B为
Q
B
Q_{B}
QB,A的电势和B的存在没有关系,因为两者相距几十米。因为B相距非常远,所以从无穷远地方带电荷靠近到达A点电荷做的功与B无关,同理B也与A无关所以A,B的电势为
V
A
=
Q
A
4
π
ξ
0
R
A
V_{A}=\frac{Q_{A}}{4\pi\xi_{0}R_{A}}
VA=4πξ0RAQA
V
B
=
Q
B
4
π
ξ
0
R
B
V_{B}=\frac{Q_{B}}{4\pi\xi_{0}R_{B}}
VB=4πξ0RBQB
由等势体
V
A
V_{A}
VA=
V
B
V_{B}
VB则可以得到
Q
A
R
A
=
Q
A
R
A
\frac{Q_{A}}{R_{A}}=\frac{Q_{A}}{R_{A}}
RAQA=RAQA
若是B是A半径的五倍,B上的电荷将是A上的五倍,但是他的表面积大了25倍,电荷密度为电荷除表面积,可以看出A的电荷密度是B的五倍
σ
=
Q
4
π
R
2
\sigma=\frac{Q}{4 \pi R^{2}}
σ=4πR2Q
可以推出曲率最大半径最小的地方电荷密度最高,这也意为这哪里电场强度最高,可以由高斯定律推出
下面是高斯定律的示意图,可以假设近似非常矮紧贴这表面。则电通量为AE,可写出公式
A
E
=
σ
A
ε
0
A E=\frac{\sigma A}{\varepsilon_{0}}
AE=ε0σA
当你有一个导体,你知道他的局部电荷分布你就会知道电场,既然电荷密度最高,即使他整体是一个等势体尖端的电场也会比较高