时间序列预测(三)基于Prophet+XGBoost的销售额预测

时间序列预测(三)基于Prophet+XGBoost的销售额预测

前面我们介绍了如何使用ProphetLSTM,不知道你们发现了没有,前者似乎太简单了,后者呢好像又很复杂。那有没有什么很好的方法能很好的中和下呢?

已知的有,Prophet能很好的分解时间趋势,LSTM可以将其他信息加入训练,同样的如果没有时间序列,XGBoost也是可以训练其他信息进行预测的,那如果将Prophet分解的时间趋势也作为特征加入训练呢?是不是就兼顾了时间趋势和额外信息了。本文参考自将梯度提升模型与 Prophet 相结合可以提升时间序列预测的效果

数据探索

以下数据如果有需要的同学可关注公众号HsuHeinrich,回复【数据挖掘-时间序列01】自动获取~

# 读取数据
raw_data = pd.read_csv('train.csv')
raw_data['datetime'] = raw_data['datetime'].apply(pd.to_datetime)
df_px = raw_data[['datetime', 'count']].copy()
df_px.rename(columns={'datetime': 'ds', 'count': 'y'}, inplace=True)

特征工程

# 切分数据集
num = 24*14 # 将最后2周划分为测试集
train, test = df_px.iloc[:-num,:], df_px.iloc[-num:,:]
# 模型拟合
m = Prophet(
                growth='linear',
                seasonality_mode='additive',
                interval_width=0.95,
                daily_seasonality=True,
                weekly_seasonality=True,
                yearly_seasonality=False
            )
m.fit(train)
<fbprophet.forecaster.Prophet at 0x7ff4e4fec730>
# 训练集提取preheat特征
predictions_train = m.predict(train.drop('y', axis=1))
# 测试集提取preheat特征
predictions_test = m.predict(test.drop('y', axis=1))
# 合并
predictions = pd.concat([predictions_train, predictions_test], axis=0)
# 将prophet的结果作为特征
df = pd.merge(raw_data, predictions, left_on=['datetime'], right_on=['ds'], how='inner')
df.drop('ds', axis=1, inplace=True)
df.set_index('datetime', inplace=True)
# 构造yhat滞后值
for lag in range(1,6):
    df[f'yhat_lag_{lag}'] = df['yhat'].shift(lag)
# 构造XGBR数据集
X = df.drop('count', axis=1)
y = df['count']
# 切分数据集
X_train, X_test = X.iloc[:-num,:], X.iloc[-num:,:]
y_train, y_test = y.iloc[:-num], y.iloc[-num:]

模型拟合

# 模型拟合
model_xgbr = XGBRegressor(random_state=0)  # 建立XGBR对象
model_xgbr.fit(X_train, y_train)
# 预测结果
pre_y = model_xgbr.predict(X_test)
# 评估指标
model_metrics_functions = [explained_variance_score, mean_absolute_error, mean_squared_error,r2_score]  # 回归评估指标对象集
model_metrics_list = [[m(y_test, pre_y) for m in model_metrics_functions]]  # 回归评估指标列表
regresstion_score = pd.DataFrame(model_metrics_list, index=['model_xgbr'],
                   columns=['explained_variance', 'mae', 'mse', 'r2'])  # 建立回归指标的数据框
regresstion_score  # 模型回归指标
explained_variancemaemser2
model_xgbr0.9997061.9845958.7825590.999703

结果展示

# 模型效果可视化
fig = plt.figure(figsize=(16,6))
plt.title('True and XGBR result comparison', fontsize=20)
plt.plot(y_test, color='red')
plt.plot(pd.Series(pre_y, index=y_test.index), color='green')
plt.xlabel('Hour', fontsize=16)
plt.ylabel('Number of Shared Bikes', fontsize=16)
plt.legend(labels=['True', 'Pre_y'], fontsize=16)
plt.grid()
plt.show()

在这里插入图片描述

哇塞,这预测结果有点夸张了。。。

# 输出特征重要性
features = X.columns  # 获取特征名称
importances = model_xgbr.feature_importances_  # 获取特征重要性

# 通过二维表格形式显示
importances_df = pd.DataFrame()
importances_df['features'] = features
importances_df['importance'] = importances
importances_df = importances_df.sort_values('importance', ascending=False)
importances_df.head(10)
featuresimportance
9registered0.939968
8casual0.058634
27yhat0.000115
32yhat_lag_50.000109
29yhat_lag_20.000101
15additive_terms0.000098
28yhat_lag_10.000098
31yhat_lag_40.000091
18daily0.000081
12yhat_upper0.000076

可以看到,除了时间趋势外,其他的一些因素也起到很重要影响

总结

基于ProphetLSTMProphet+XGBoost这三种方法,相信大家在做时间序列预测相关的任务时,应该可以得心应手了~

共勉~

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值