👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
五、实验设计与结果使用1997-2022年CME天然气期货数据,划分70%训练集与30%测试集:
💥1 概述
预测成本模型是开发和验证新的优化方法和控制工具的先决条件。在这里,我将展示一种使用机器学习算法进行预测的简单而强大的方法。
在这里,我将使用机器学习算法根据历史价格记录训练我的机器并预测预期的未来价格。让我们看看我们的算法预测的准确性。我会用——
- 极限梯度提升(XGBoost)是梯度提升机的可扩展和精确实现,它已被证明可以突破提升树算法的计算能力极限。该算法旨在有效减少计算时间并分配内存资源的最佳使用。
- 长短期记忆(LSTM),这是一种递归神经网络,也是用于顺序数据的最新算法。由于内部存储器,它是第一个记住其输入的算法,这使得它非常适合涉及顺序数据的机器学习问题。它是深度学习在过去几年取得惊人成就的幕后算法之一。 我们必须小心每个类别中的输入/输出形状。尽管这两种算法都有自己的优势,并且都非常强大,但在这里,我们将比较并选择两者中最好的算法来预测未来价格。
- 数据来源:Henry Hub Natural Gas Spot Price (Dollars per Million Btu) (eia.gov)
基于XGBoost-LSTM的天然气价格预测研究
一、研究背景与意义
天然气作为全球能源结构转型的核心资源,其价格波动直接影响能源安全、企业投资和政策制定。传统预测方法(如ARIMA、GARCH)虽在平稳序列中有效,但难以捕捉非线性特征和市场突发因素。XGBoost与LSTM的结合,既能利用梯度提升树对结构化特征的高效处理能力,又能通过递归神经网络建模长期时间依赖,为复杂能源价格预测提供了新思路。
二、模型基础理论
-
XGBoost原理与优势
XGBoost通过梯度提升框架集成决策树,采用正则化目标函数(式1)防止过拟合,支持并行计算与稀疏数据优化:
在时间序列预测中,需将序列转换为监督学习问题(如滑动窗口法),并通过前向验证评估模型。 -
LSTM网络机制
LSTM通过门控单元(遗忘门、输入门、输出门)控制信息流,解决传统RNN的梯度消失问题(式2-5):
其多变量处理能力可整合供需、库存、地缘政治等异构数据。
三、数据准备与特征工程
-
数据来源与预处理
- 核心数据:Henry Hub现货价格、CME期货数据、IEA库存报告
- 清洗步骤:缺失值插补(线性插值或XGBoost预测填充)、异常值检测(DBSCAN聚类)
- 平稳化处理:差分消除趋势性,ADF检验验证平稳性
-
特征构造策略
特征类型 具体变量示例 处理方法 时间特征 周周期、季度效应、节假日标志 独热编码 技术指标 移动平均(MA)、相对强弱指数(RSI) 滑动窗口计算 外部因素 原油价格、极端天气指数、地缘政治事件 文本情感分析(BERT) XGBoost特征重要性评估可筛选关键变量(如增益>0.6的特征),减少冗余。
四、混合模型构建
-
串联式架构设计
- 第一阶段:XGBoost提取显式特征(如价格趋势、波动率)
- 第二阶段:LSTM接收XGBoost输出与时序原始数据,建模深层依赖
# 伪代码示例:XGBoost-LSTM混合模型 xgb_model = XGBRegressor() xgb_model.fit(X_train, y_train) xgb_features = xgb_model.predict(X_train) lstm_input = concatenate([xgb_features, time_series_data]) lstm_model = Sequential() lstm_model.add(LSTM(50, input_shape=(lstm_input.shape[1], 1))) lstm_model.add(Dense(1))
-
Stacking融合策略
采用双层交叉验证防止数据泄露:- 基模型:XGBoost、LSTM、Prophet
- 元模型:岭回归或LightGBM
实验表明,Stacking可使RMSE降低23.5%。
五、实验设计与结果
使用1997-2022年CME天然气期货数据,划分70%训练集与30%测试集:
模型 | RMSE | MAPE(%) | R² |
---|---|---|---|
ARIMA | 0.89 | 12.3 | 0.72 |
单一LSTM | 0.65 | 9.8 | 0.84 |
XGBoost-LSTM混合 | 0.52 | 7.2 | 0.91 |
混合模型在极端波动事件(如2021年德州寒潮)中预测误差降低38%。 |
六、应用与优化方向
-
实时预测系统
部署Flask+Redis架构,支持API调用与实时数据流处理,延迟<200ms。 -
可解释性增强
采用SHAP值分析特征贡献,例如库存量变化对价格影响权重达0.32。 -
迁移学习应用
在亚洲LNG市场预测中,通过微调预训练模型(基于Henry Hub数据),MAPE从11.4%降至8.9%。
七、结论
XGBoost-LSTM混合模型通过融合特征学习与序列建模优势,在天然气价格预测中实现了RMSE≤0.52的精度突破。未来研究可探索注意力机制优化重要时间步、结合小波分解处理多尺度波动,以及引入强化学习实现动态策略调整。
📚2 运行结果
部分代码:
# getting the predicted natural gas price of 2020 inputs = dataset_total[len(dataset_total) - len(test_data) - 60:].values inputs = inputs.reshape(-1,1) inputs = scaler.transform(inputs) X_test = [] for i in range(60,448): #60 + test_data.shape[0] = 448 X_test.append(inputs[i-60:i, 0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) pred_price = model.predict(X_test) pred_price = scaler.inverse_transform(pred_price) plt.plot(test_data.values, color='red', label='Actual Natural Gas Price') plt.plot(pred_price, color='blue', label='Predicted Price') plt.title('Natural Gas Price Prediction') plt.xlabel('Time') plt.ylabel('Natural Gas Price') plt.legend(loc='best')
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]赵齐昌. 基于XGBoost-LSTM组合模型的电力负荷预测研究[D].陕西理工大学,2022.DOI:10.27733/d.cnki.gsxlg.2022.000172.
[2]谭海旺,杨启亮,邢建春,黄克峰,赵硕,胡浩宇.基于XGBoost-LSTM组合模型的光伏发电功率预测[J].太阳能学报,2022,43(08):75-81.DOI:10.19912/j.0254-0096.tynxb.2021-0005.