关系(二)利用python绘制热图
热图 (Heatmap)简介
热图适用于显示多个变量之间的差异,通过颜色判断彼此之间是否存在相关性。
快速绘制
-
基于seaborn
import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl # 自定义数据 df = pd.DataFrame(np.random.random((5,5)), columns=["a","b","c","d","e"]) # 利用seaborn的heatmap函数创建 sns.heatmap(df) plt.show()
定制多样化的热图
自定义热图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。
seaborn主要利用heatmap
绘制热图,可以通过seaborn.heatmap了解更多用法
-
不同输入格式的热图
import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd np.random.seed(0) sns.set(font='SimHei', font_scale=0.8, style="white") # 解决Seaborn中文显示问题 # 初始化 fig = plt.figure(figsize=(12,8)) # 宽型:是一个矩阵,其中每一行都是一个个体,每一列都是一个观察值。即热图的每个方块代表一个单元格 df = pd.DataFrame(np.random.random((6,5)), columns=["a","b","c","d","e"]) ax = plt.subplot2grid((2, 2), (0, 0), colspan=1) sns.heatmap(df) ax.set_title('宽型') # 方型:相关矩阵热图 df = pd.DataFrame(np.random.random((100,5)), columns=["a","b","c","d","e"]) corr_matrix=df.corr()