数学建模之方差分析
方差分析(Analysis of Variance, ANOVA)
——用数理统计分析试验结果,鉴别各因素对结果影响程度的方法。
人们关心的试验结果称为指标,试验中需要考察、可以控制的条件称为因素或因子,因素所处的状态称为水平
应用场景
为了使生产过程稳定,达到优质、高产,需要对影响产品质量的因素进行分析,找出有显著影响的那些因素,除了从机理方面进行研究外,常常要做许多试验,对结果作分析、比较,寻求规律。
例如,从用几种不同工艺制成的灯泡中,各抽取了若干测量其寿命,要推断这几种工艺制成的灯泡寿命是否有显著差异;(判断不同工艺对灯泡寿命的影响程度)[单因素方差分析]
再如,用几种化肥和几个小麦品种在若干试验田里种植小麦,要推断不同的化肥和品种对产量有无显著差异[双因素方差分析]
单因素方差分析
只考虑一个因素A,A取几个水平,在每个水平上做若干试验,试验过程中,除A外的其他影响指标的因素都保持不变(只有随机因素存在)
将问题转换为假设检验——利用F-分布做显著性水平检验。
方差分析一般用的显著性水平是:
- 取 α = 0.01 \alpha = 0.01 α=0.01,拒绝 H 0 H_0 H0,称因素A的影响(或A各水平的差异)非常显著
- 取 α = 0.01 \alpha = 0.01 α=0.01,不拒绝 H 0 H_0 H0;而取 α = 0.05 \alpha = 0.05 α=0.05,拒绝 H 0 H_0 H0