Kernel Regression 核回归 详细讲解
传统的线性回归只能拟合一条直线,核回归作为拟合非线性模型的一种方法,本质是利用核函数作为权重函数来建立非线性回归模型的。
先总结一下核回归的结论:
利用核函数计算出 x i x_i xi在 x x x处的权重为: w i = K ( x , x i ) ∑ i = 1 N K ( x , x i ) w_i=\frac{K(x,x_i)}{\sum_{i=1}^{N}K(x,x_i)} wi=∑i=1NK(x,xi)K(x,xi)
x i x_i xi(观测数据点,也就是我们的数据集中的点), x x x(要预测的点)
则在 x x x处预测的 y y y值为所有 y i y_i yi的加权和: y = ∑ i = 1 N w i ∗ y i y=\sum_{i=1}^{N}w_i*y_i y=i=1∑Nwi∗y