Kernel Regression 核回归 详细讲解

Kernel Regression 核回归 详细讲解

传统的线性回归只能拟合一条直线,核回归作为拟合非线性模型的一种方法,本质是利用核函数作为权重函数来建立非线性回归模型的。
先总结一下核回归的结论:
利用核函数计算出 x i x_i xi x x x处的权重为: w i = K ( x , x i ) ∑ i = 1 N K ( x , x i ) w_i=\frac{K(x,x_i)}{\sum_{i=1}^{N}K(x,x_i)} wi=i=1NK(x,xi)K(x,xi)
x i x_i xi(观测数据点,也就是我们的数据集中的点), x x x(要预测的点)
则在 x x x处预测的 y y y值为所有 y i y_i yi的加权和: y = ∑ i = 1 N w i ∗ y i y=\sum_{i=1}^{N}w_i*y_i y=i=1Nwiy

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值