IV与PSI的理解–深入浅出
一、IV理解
IV衡量的是某一个变量的信息量,是基于WOE来计算的,也可以说是基于KL散度的计算。用于变量个数较多场景下的变量初筛。
Iv取值范围 | 含义 |
---|---|
(0,0.02] | 无预测力 |
(0.02,0.1] | 较弱预测力 |
(0.1,+∞) | 预测力可以 |
理论上,是保留IV值大于0.1的变量进行筛选。
工业上,一般IV超过0.05可以通过初筛,根据变量iv实际情况可以灵活设置阈值。
-
WOE理解
woe是一种分箱手段,我理解的最主要有四个作用:
1)归一化:分箱且woe编码映射后的变量,可以将变量归一到近似尺度上;
2)引入非线性:对于逻辑回归这类线性模型,引入变量分箱可以增强模型的拟合能力,实现了按WOE排序的区间正样本比例呈单调趋势;
3)增强鲁棒性:分箱可以避免异常数据对模型的影响
4)可解释性:使变量具有可解释性 -
WOE计算
WOE=ln(Pxi / Qxi)
Pxi 表示正样本中某一箱的占比,Qxi表示负样本中某一箱的占比。 -
KL散度计算