Python环境下滚动轴承状态监测与故障诊断(NASA IMS轴承数据集)

智能维护系统IMS)滚动轴承数据是美国辛辛那提大学智能维护系统中心提供的全寿命周期数据,轴上安装了4个轴承。通过摩擦带将转速保持恒定在 2000r/min。包含3个数据集,每个数据集描述了一个测试到失败的实验。其中第一个实验装置的数据采集从 2003 年 10月 22日12时6分24秒开始到2003年11月25日23时39分56秒结束,总共持续了约827h,每隔 10min 采集一次振动信号,采样频率为20kHz,实验结束时,轴承3和轴承4分别出现了内圈故障和滚动体故障。

本项目采用Python编程语言,jupyter notebook文本编辑器,使用的部分模块如下:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值