Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

循环生成对抗网络(Cycle-GAN)用于图像风格迁移

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

原文链接:https://arxiv.org/pdf/1703.10593.pdf

通过这篇文章介绍一下Cycle-GAN的思想。

这篇文章的主要贡献:

在图像风格迁移中,往往需要成对的数据(下图左侧)对GAN进行训练,比如cGAN 。cGAN的介绍:https://blog.csdn.net/weixin_39417323/article/details/89378344
但是这样的数据库比较少,单独做一个的话,代价又太高。该论文利用Cycle-GAN使用不成对的两个风格的数据库(下图右侧)实现了图像的风格迁移。

在这里插入图片描述

下图是一些使用Cycle-GAN的例子。

在这里插入图片描述

那么,我们从mode collapse引出Cycle-GAN。如下图所示,我们希望GAN生成的数据分布是第一张图的八个点,第二行图是我们希望的训练过程。然而实际的训练过程却总是进入第三行图的怪圈,也就是mode collapse。原因是:当生成器生成的数据大部分都分布在同一个点附近的时候,那么判别器就学到了在这一个点附近的数据都是生成的。这样生成器就无法继续生成在这个点附近的数据,只能跳到其它的点。然后一段时间后判别器又学到了,周而复始,形成了一场追逐游戏。

在这里插入图片描述
所以,如果发生以上问题,那么不管生成器的输入是什么,输出都差不多。比如我们希望生成器可以生成很多种小动物,最后却只能生成狗。这显然是不可接受的。

针对该问题作者提出了cycle consistent(循环一致性)。既然生成器G能从x生成y(G(x)),那么我们可以再使用一个生成器F从y生成x(F(y))。这样的话,如果如上图所示只能生成一个点附近的数据,那么对于绝大部分样本x,虽然生成了y,但是无法再从y生成对应的x。因为对于这些x来说,他们对应的y可能不在这个点的附近。

接下来,自然就会想到:如果有两个生成器,那么就应该有两个判别器,Dx(对x和F(y)进行判决)和Dy(对y和G(x)进行判决)。如下图所示:

在这里插入图片描述

对Dy的优化目标如下:
在这里插入图片描述
Dx的优化目标与上式结构相同。

进一步,作者提出了cycle consistency loss,即:
在这里插入图片描述
如下图所示:
在这里插入图片描述

其优化目标如下:

在这里插入图片描述

图和公式解释的很清楚了,多说无益。

最终的优化目标:
在这里插入图片描述
其中:
在这里插入图片描述

这样就在一定程度上解决了mode collapse,同时不需要使用成对的数据进行训练。

最后,我们一起欣赏一下,可能是CV界最富有诗情画意的论文节选:
在这里插入图片描述
这说明,写论文的时候也不要过分墨守成规…

总结:可能是对于数据库的要求比较低,所以Cycle-GAN的适用性不是很广。所以如果有成对的数据库选cGAN,没有的话,Cycle-GAN是一个很好的选择。

欢迎讨论 欢迎吐槽

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值