【LLM入门之 星火大模型】(一) 获取API_KEY 以及本地运行

本文介绍了如何使用星火大模型API进行简单的调用,包括领取免费额度、创建应用、设置参数以及在Python环境中安装和编写示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近就写点LLM入门的吧 =。=

本篇会介绍星火大模型API简单的调用。适合没有魔法的同学。
新用户注册会有免费的200w额度调用。够尝尝鲜。

首先打开官网, 先去领取免费额度,如下图所示:
在这里插入图片描述
按照自身条件领取或采购。点击免费试用后,
在这里插入图片描述
需要新建一个应用,这里随便取名字后,直接下单就行。
然后进入控制台,点击大模型V3.5
在这里插入图片描述

右上角可以看到你的参数,按需保存和调用。

然后打开你的IDE,控制台中输入以下命令:

pip install --upgrade spark_ai_python

安装好后,输入以下代码:


                
### 配置 DeepSeek 的 `base_url` 和 `api_key` 在本地化部署 DeepSeek 模型时,通常会通过 REST API 或 gRPC 接口与其交互。为了实现这目标,需要正确设置 `base_url` 和 `api_key` 参数。 #### 设置 `base_url` `base_url` 是指向运行中的 LLM 服务的地址和端口号。当使用命令行工具启动 DeepSeek 模型的服务时,默认情况下它会在本地主机上监听特定端口(通常是 8000)。因此,可以将 `base_url` 设置为: ```plaintext http://localhost:8000 ``` 如果更改了默认端口或者启用了远程访问,则需相应调整 URL 地址[^1]。 #### 定义 `api_key` 对于安全性考虑,在某些环境中可能要求提供 API 密钥来验证请求合法性。虽然标准文档未明确提及强制性的 `api_key` 使用场景,但如果项目中有此需求,可以通过环境变量或配置文件指定密钥值。例如,在 Linux/MacOS 下可通过如下方式设定环境变量: ```bash export DEEPSEEK_API_KEY="your_api_key_here" ``` 随后确保客户端 SDK 能够读取该变量并随每次调用附带至服务器端进行身份确认[^2]。 以下是利用 Python 请求库发送 POST 请求的个简单例子展示如何包含上述两个参数: ```python import requests url = 'http://localhost:8000/v1/completions' headers = { 'Authorization': f'Bearer {os.getenv("DEEPSEEK_API_KEY")}' } data = {"prompt": "Once upon a time", "max_tokens": 50} response = requests.post(url, headers=headers, json=data) print(response.json()) ``` 以上脚本假设已定义好正确的 `base_url` 及有效的 `api_key` 并存于操作系统级别的环境变量之中。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值