【学习笔记】利用偏导求解不等式(拉格朗日数乘法)

偏导概念的引入

在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。
在一元函数中,导数就是函数的变化率。对于二元函数的“变化率”,由于自变量多了一个,情况就要复杂的多。
x O y xOy xOy 平面内,当动点由 P ( x 0 , y 0 ) P(x0,y0) P(x0,y0) 沿不同方向变化时,函数 f ( x , y ) f(x,y) f(x,y) 的变化快慢一般来说是不同的,因此就需要研究 f ( x , y ) f(x,y) f(x,y) ( x 0 , y 0 ) (x0,y0) (x0,y0) 点处沿不同方向的变化率。
偏导数反映的是函数沿坐标轴正方向的变化率。

——以上内容摘自百度百科

举例

z = x 2 − 2 x y + y 3 z=x^2-2xy+y^3 z=x22xy+y3 的偏导数 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x},\frac{\partial z}{\partial y} xz,yz

  • 步骤一:用题中表达式进行替换
  • 步骤二:把其他字母看成常数
  • 步骤三:求导

∂ z ∂ x = ∂ ( x 2 − 2 x y + y 3 ) ∂ x = 2 x − 2 y \frac{\partial z}{\partial x}=\frac{\partial (x^2-2xy+y^3)}{\partial x}=2x-2y xz=x(x22xy+y3)=2x2y ∂ ( x 2 − 2 x a + a 3 ) ∂ x = 2 x − 2 a \frac{\partial (x^2-2xa+a^3)}{\partial x}=2x-2a x(x22xa+a3)=2x2a

∂ z ∂ y = ∂ ( x 2 − 2 x y + y 3 ) ∂ y = − 2 x + 3 y 2 \frac{\partial z}{\partial y}=\frac{\partial (x^2-2xy+y^3)}{\partial y}=-2x+3y^2 yz=y(x22xy+y3)=2x+3y2 ∂ ( a 2 − 2 a y + y 3 ) ∂ y = − 2 a + 3 y 2 \frac{\partial (a^2-2ay+y^3)}{\partial y}=-2a+3y^2 y(a22ay+y3)=2a+3y2


应用

由于偏导数属于高等数学,本文仅简单说明其在高中不等式解题中的应用思路。

(2011·浙江理)设 x , y x,y x,y 为实数,若 4 x 2 + y 2 + x y = 1 4x^2+y^2+xy=1 4x2+y2+xy=1 ,则 2 x + y 2x+y 2x+y 的最大值是 ______ 。

f ( x , y , λ ) = 2 x + y + λ ( 4 x 2 + y 2 + x y − 1 ) f(x,y,\lambda)=2x+y+\lambda(4x^2+y^2+xy-1) f(x,y,λ)=2x+y+λ(4x2+y2+xy1)

4 x 2 + y 2 + x y = 1 4x^2+y^2+xy=1 4x2+y2+xy=1 4 x 2 + y 2 + x y − 1 = 0 4x^2+y^2+xy-1=0 4x2+y2+xy1=0

所以 f ( x , y , λ ) = 2 x + y + λ ( 4 x 2 + y 2 + x y − 1 ) = 2 x + y + λ ⋅ 0 = 2 x + y f(x,y,\lambda)=2x+y+\lambda(4x^2+y^2+xy-1)=2x+y+\lambda ·0=2x+y f(x,y,λ)=2x+y+λ(4x2+y2+xy1)=2x+y+λ0=2x+y ,跟线性规划一致,可将 f ( x , y , λ ) f(x,y,\lambda) f(x,y,λ) 看作目标函数。其中 λ \lambda λ 可以看成是目标 2 x + y 2x+y 2x+y 在约束条件 4 x 2 + y 2 + x y − 1 = 0 4x^2+y^2+xy-1=0 4x2+y2+xy1=0 下可自由伸缩的空间。

一般地:在约束条件 h ( x , y ) = 0 h(x,y)=0 h(x,y)=0 下,求 g ( x , y ) g(x,y) g(x,y) 的最值问题,可以令 f ( x , y , λ ) = g ( x , y ) + λ ⋅ h ( x , y ) f(x,y,\lambda)=g(x,y)+\lambda ·h(x,y) f(x,y,λ)=g(x,y)+λh(x,y)

得方程组 { ∂ f ( x , y , λ ) ∂ x = 2 + λ ( 8 x + y ) = 0 ∂ f ( x , y , λ ) ∂ y = 1 + λ ( 2 y + x ) = 0 4 x 2 + y 2 + x y = 1 \begin{cases} \large{\frac{\partial f(x,y,\lambda)}{\partial x}=2+\lambda(8x+y)=0} \\ \\ \large{\frac{\partial f(x,y,\lambda)}{\partial y}=1+\lambda(2y+x)=0} \\ \\ \large{4x^2+y^2+xy=1} \end{cases} xf(x,y,λ)=2+λ(8x+y)=0yf(x,y,λ)=1+λ(2y+x)=04x2+y2+xy=1

一般地, { ∂ f ( x , y , λ ) ∂ x = 0 ∂ f ( x , y , λ ) ∂ y = 0 h ( x , y ) = 0 \begin{cases} \large{\frac{\partial f(x,y,\lambda)}{\partial x}=0} \\ \\ \large{\frac{\partial f(x,y,\lambda)}{\partial y}=0} \\ \\ \large{h(x,y)=0} \end{cases} xf(x,y,λ)=0yf(x,y,λ)=0h(x,y)=0

消元解得唯一解 2 x = y = 10 5 2x=y=\frac{\sqrt{10}}{5} 2x=y=510 ,此时 2 x + y 2x+y 2x+y 取得最大值 2 10 5 \frac{2\sqrt{10}}{5} 5210

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值