导读
NormalizeMets
是一个R语言集成包,主要用于代谢组学研究中数据的归一化。这个包可以用于去除数据中的噪音,如大样本中存在的共性问题——质谱信号偏移。那么除此之外,这个包还可以进行图形的交互式可视化以及获得一些常规的统计结果,如生物标记物的发现,聚类及PCA分析,分类及相关性分析。
Pipeline
第一步 导入数据
rm(list = ls())
library(NormalizeMets)
data("alldata_eg")
featuredata_eg<-alldata_eg$featuredata
# 1.featuredata is a metabolomics data matrix taking the following format, with metabolites in columns and samples in rows. Unique sample names should be provided as row names.
dataview(featuredata_eg)
# 2.sampledata sampledata is a dataframe that contains sample specific information,行名是
# 样品名,列名是一些协变量信息,如性别、批次、年龄、BMI
sampledata_eg <- alldata_eg$sampledata
dataview(sampledata_eg)
# 3.metabolitedata 包含代谢物的特定信息,比如内标外标或者正负对照,行名是代谢物的名称
# ,其顺序要和featuredata一致
metabolitedata_eg<-alldata_eg$metabolitedata
dataview(metabolitedata_eg)
alldata_eg<-list(featuredata=featuredata_eg, sampledata=sampledata_eg,
metabolitedata=metabolitedata_eg)
dataview(alldata_eg$metabolitedata)
第二步 数据处理
1. log转换
代谢组学数据一般都呈现一个偏态分布(右偏),所以需要用一个合适的转换来使得数据的分布变得对称一些