max sum 1003 java_HDU 1003 MAX SUM java 实现

/*

* 典型动态规划的思想 动态规划的经典题 之前我一直不是很理解动态规划

* 我个人做题的时候 遇到动态规划的题型 直接用递归

* 算法分析:求最大字段和,d[i]表示在已i结尾(包含i)在a[1...i]上的最大和,d[i]=(d[i-1]+a[i]>)?d[i-1]+a[i]:a[i];

* max={d[i],n>=i>=1}

*

* */

import java.util.Scanner;

public class Main {

public static void main(String[] args) {

Scanner in =new Scanner(System.in);

final int N=100010; //注意定义多一些 开始我定义少了 提交三次都是WA

int[] a =new int[N];

int[] d=new int[N];

int ee=0;

int test=in.nextInt();

for(int j=0;j

int x=in.nextInt();

for(int y=1;y<=x;y++){

a[y]=in.nextInt();

}

d[1]=a[1];

for(int m=2;m<=x;m++)// 动态规划的核心

{

if(d[m-1]<0)

d[m]=a[m];

else

d[m]=d[m-1]+a[m];

}

int max=d[1],e=1;

for(int a1=2;a1

{

if(max

{

max=d[a1];

e=a1;

}

}

int t=0,f=e;

for(int i=e;i>0;i--)//找出最左边的点

{

t=t+a[i];

if(t==max)

f=i;

}

System.out.println("Case "+(j+1)+":");

System.out.println(max+" "+f+" "+e);

ee++;

if(ee!=test)

System.out.println();

}

}

}

好的,关于 HDU4992 求所有原根的问题,我可以给出以下解答: 1. 首先,我们需要知道什么是原根。原根是指模 n 意义下,所有与 n 互质的数 a 的最小正整数 k 次幂对 n 取模的值覆盖了所有与 n 互质的数。简单来说,就是如果一个数 a 是模 n 意义下的原根,那么 a 的任何正整数次幂对 n 取模的值都不相同,且能覆盖所有与 n 互质的数。 2. 为了求模 n 意义下的所有原根,我们需要先求出与 n 互质的数的个数 phi(n)。phi(n) 可以使用欧拉函数求出。 3. 然后,我们需要枚举模 n 意义下的所有数,判断它是否是原根。具体来说,对于每个 a,我们需要判断 a 的每个小于 phi(n) 的正整数次幂对 n 取模的值是否都不相同,且能覆盖所有与 n 互质的数。如果是,那么 a 就是模 n 意义下的原根。 4. 代码实现可以参考以下 Java 代码: ``` import java.util.*; public class Main { static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static int phi(int n) { int res = n; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { res = res / i * (i - 1); while (n % i == 0) { n /= i; } } } if (n > 1) { res = res / n * (n - 1); } return res; } static int pow(int a, int b, int mod) { int res = 1; while (b > 0) { if ((b & 1) != 0) { res = res * a % mod; } a = a * a % mod; b >>= 1; } return res; } static boolean check(int a, int n, int phi) { for (int i = 1, j = pow(a, i, n); i <= phi; i++, j = j * a % n) { if (j == 1) { return false; } } return true; } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); while (scanner.hasNext()) { int n = scanner.nextInt(); int phi = phi(n); List<Integer> ans = new ArrayList<>(); for (int i = 1; i < n; i++) { if (gcd(i, n) == 1 && check(i, n, phi)) { ans.add(i); } } Collections.sort(ans); for (int x : ans) { System.out.print(x + " "); } System.out.println(); } } } ``` 其中,gcd 函数用于求最大公约数,phi 函数用于求欧拉函数,pow 函数用于快速幂求模,check 函数用于判断一个数是否是原根。在主函数中,我们依次读入每个 n,求出 phi(n),然后枚举模 n 意义下的所有数,判断它是否是原根,将所有原根存入一个 List 中,最后排序输出即可。 希望我的回答能够帮到你,如果你有任何问题,欢迎随时提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值