正交变换在基下的矩阵都是可逆阵_在线计算专题(12):矩阵的特征值、特征向量、正交变换与二次型与常见矩阵分解...

本文详细探讨了矩阵的正交变换,包括计算特征多项式、特征值与特征向量、矩阵对角化、向量的正交化与正交矩阵。此外,还介绍了如何利用正交变换将二次型标准化,以及矩阵对称性和正定性的判定。同时,讲解了常见矩阵分解方法,如QR分解、SVD分解和舒尔分解。
摘要由CSDN通过智能技术生成

9c0bfb6ff6dcdcd2a6daf36809b2a639.png

本文将以实例的形式,基于Wolfram Alpha计算搜索引擎,介绍了矩阵特征值、特征向量的计算,矩阵的常见分解与对角化、二次型的标准化及矩阵正定性的判定等相关问题的实现方法.
目录:
  • 1、计算特征多项式
  • 2、矩阵的特征值、特征向量
  • 3、矩阵的对角化
  • 4、向量值的正交化与正交矩阵
  • 5、正交变换与二次型的标准化
  • 6、矩阵的对称性与正定性的判定
  • 7、常见矩阵的分解
  • 工具:WolframAlpha计算搜索引擎

  • 位置:http://www.wolframalpha.com,打开网页直接操作,其中windows app也可以通过Windows 10应用商店下载安装!

特别提示:如果使用网页版执行操作,不需要下载、安装任何软件,也不需要点任何链接,直接网页打开的那个搜索文本编辑框(如下图)输入表达式就可以了!系列推文中除特别强调外,显示的结果都能直接看到的!

f993b800d67f9340ff0fc127ac79cd95.png

  • 手机:可以直接打开网页操作,或者自行网络搜索下载安装WolframAlpha APP版本操作

  • 执行界面:网页、手机或平板等操作界面基本一致.

1、计算特征多项式

例 计算以下矩阵的特征多项式

参考输入表达式为

characteristic polynomial {{-1,1,0},{-4,3,0},{1,0,2}}

执行计算得到的结果如下.

f72fc73baa6407d3914f9b9facb6ca84.png

将鼠标指针移动到特征多项式结果上方,在右下角出现的按钮中选择“Plain Text”,然后在可复制的纯文本上点击鼠标左键,将其复制到剪贴板,然后在计算编辑框中输入solve后粘贴文本,并令其等于0,得到如下参考表达式

solve -λ^3 + 4 λ^2 - 5 λ + 2=0

执行计算得到的结果如下.

8627d864c2bedfa1fafcb627176ce26e.png

计算结果为. 结合前面的多项式可以知道,其中二重根.

2、矩阵的特征值、特征向量

例 计算以下矩阵的特征值与特征向量.

参考输入表达式为

eigenvalues {{-2,1,0},{-4,3,0},{1,0,3}}

执行计算得到的结果如下.

caaa00848c825dfcd039bbf7dd99892d.png

结果不仅给出了特征值结果,也给出了特征向量. 如果把eigenvalues改成eigenvectors,则先给出特征向量,然后再给出特征值,并且绘制特征向量的图形演示. 而把eigenvalues替换为eigensystem,如输入表达式为

eigensystem{{-2,1,0},{-4,3,0},{1,0,3}}

则逐个对应的给出特征值及对应的特征向量,如下图所示.

788b84f6b365860f4d582f2482019ddd.png
3、矩阵的对角化

例 求可逆矩阵和对角矩阵 ,使得. 其中

并验证其结论成立.

参考输入表达式为

eigensystem {{-2, 0, 1}, {0, 2, 0}, {1, 1, 2}}

执行计算得到的结果如下.

6dea165f63df59ea17ed43284c01c645.png

从中可以看到矩阵有特征值与特征向量,它们的对应关系为

所以所求对角矩阵和可逆矩阵为

为验证结论成立,输入如下参考表达式

simplify (inverse  {{-2 - Sqrt[5], -2 + Sqrt[5], 1}, {0, 0, -1}, {1, 1, 4}}).{{-2, 0, 1}, {0, 2, 0}, {1, 1, 2}}.{{-2 - Sqrt[5], -2 + Sqrt[5], 1}, {0, 0, -1}, {1, 1, 4}}

计算得到结果如下.

c722a73583849dce4b11cd1fac5e1ab1.png

从计算结果可以看到,以上矩阵满足题目要求. 以上过程也可以直接对角化,输入的参考表达式为

diagonalize {{-2, 0, 1}, {0, 2, 0}, {1, 1, 2}}

计算结果显示如下.

fff6d71f8cdbbd1df3b23a41cf191e32.png

与上面操作得到的结果一致,并且直接给出了逆矩阵.

4、向量值的正交化与正交矩阵

例1 将下列矩阵的列向量组单位正交化.

矩阵正交化是将其列向量正交化,并且向量正交化后再转置为矩阵描述,所以参考输入表达式为

transpose orthogonalize {1,1,1}, {1,2,3}, {1,4,9}

执行计算得到的结果如下.

d0f31a584247309659b32965173e4863.png

例2 试求一个正交相似变换矩阵,将下列对角矩阵化为对角阵.

输入参考表达式

eigensystem {{2, 2, -2}, {2, 5, -4}, {-2, -4, 5}}

执行计算得到特征值和特征向量分别为

将三个向量构成的向量值正交化并转置,则得所求的正交变换矩阵,即输入

transpose orthogonalize {-1, -2, 2}, {2, 0, 1}, {-2, 1, 0}

执行计算得到结果如下

b38a640e614c425fb24b71971abdda61.png

最后的矩阵即为所求的正交变换矩阵. 同时可以验证正交矩阵的转置与矩阵的乘积为单位矩阵. 如将鼠标指针移动到结果矩阵上,在右下角出现的按钮中点击纯文本“Plain Text”,在出现的纯文本显示列表中,用鼠标左键点击最下面的Wolfram语言纯文本输出将矩阵纯文本表达式复制到剪贴板. 然后在表达式输入框中输入圆括号,里面输入transpose再加矩阵,然后在后面输入点加矩阵,即表达式为

(transpose {{-1/3, 2/Sqrt[5], -2/(3 Sqrt[5])}, {-2/3, 0, Sqrt[5]/3}, {2/3, 1/Sqrt[5], 4/(3 Sqrt[5])}}).{{-1/3, 2/Sqrt[5], -2/(3 Sqrt[5])}, {-2/3, 0, Sqrt[5]/3}, {2/3, 1/Sqrt[5], 4/(3 Sqrt[5])}}

执行可得结果为单位矩阵,执行结果如下图所示.

57daadc24aaf985340387058f276cbc2.png
5、正交变换与二次型的标准化

例 构建一个正交变换将下列二次型化为标准形

二次型的矩阵为

计算矩阵的特征值与特征向量,参考输入表达式为

eigensystem {{1,1,0},{1,0,-1},{0,-1,1}}

计算得到特征值与对应的特征向量如下图所示.

8e3117996d9e0d905498c12c89e62a03.png

将特征向量正交化构建正交变换矩阵,输入的参考表示为

transpose orthogonalize {{-1,-1,1},{-1,2,1},{1,0,1}}

执行计算得到的正交变换矩阵如下.

1ff458ca0a1bc2c1c895103975d4d3f2.png

于是令

将以上式子展开,得

代入原二次型可得二次型的标准形为

6、矩阵的对称性与正定性的判定

例1 判断如下是否为对称矩阵

判定是否对称参考输入表达式为

is {{2, 3}, {3, 8}} a symmetric matrix

执行计算得到的结果显示如下.

278f2dcbb09b63e38604899455ff3a93.png

结果告诉我们矩阵为对称矩阵. 参考输入表达式为

is {{-2, 3,1}, {4, -8,3},{4,1,3}} a symmetric matrix

计算结果告诉我们该矩阵不是一个对称矩阵,而且给出对称化结果,即非对称化元素对称元素和的一半作为元素形成对称矩阵和反对称形式,如下图所示.

24e4c34129b3c560acae8518b8fbc028.png

例2 判断如下矩阵的正定性

判定是否正定的参考输入表达式为

is  {{2, 3}, {4, 8}} a positive definite matrix

执行计算得到的结果显示如下.

84b5f36003eab48a875d29a34c941bcd.png

结果不仅告诉我们该矩阵时一个正定矩阵,而且给出了该矩阵的两个特征值,两个特征值都是正的. 为判定的正定性,只要将上面的矩阵换成矩阵的元素就可以了,参考输入表达式为

is  {{-2, 3,1}, {4, -8,3},{4,1,3}} a positive definite matrix

计算结果告诉我们该矩阵不是一个正定矩阵.

例3 判定以下矩阵是否为负定矩阵.

为判定矩阵,输入参考表达式为

is {{-2, 3,1}, {3, -8,1},{1,1,-3}} a negative definite matrix

执行计算得到的结果显示矩阵为负定矩阵.  输入表达式

is {{1, 1, 0}, {1, 2, 0}, {0, 0, 0}} a negative definite matrix

则显示该矩阵不是负定矩阵,而且特征值两个正的一个等于0. 输入如下表达式

is {{1, 1, 0}, {1, 2, 0}, {0, 0, 0}} a positive semidefinite matrix

则计算结果显示该矩阵为一个半正定矩阵,如下图所示.

a4959e768703091ab73f68e5e6d97f62.png

【注】值得注意的是,判定矩阵为负定、半正定矩阵时,一般要求输入的矩阵对称矩阵. 类似可以判定半负定.

7、常见矩阵的分解

例1 矩阵的分解. 将下列矩阵分解为矩阵.

参考输入表达式为

lu decomposition {{1, -2, 0}, {-2, 3, -2}, {0, -2, 1}}

执行计算得到的结果如下.

d1d3dcc847c811c395bec052c1b01e39.png

分别得到下三角矩阵与下三角矩阵.

例2 矩阵的约当(Jordan)-分解.

参考输入表达式为

jordan decomp {{1, -2, 0}, {-2, 3, -2}, {0, -2, 1}}

执行计算得到的结果如下.

d933cd052d8acbab83c2a0bc3b38f738.png

例3 矩阵的QR-分解. 它是将矩阵分解成一个正规正交矩阵与上三角形矩阵.

参考输入表达式为

QR decomposition {{1, -2, 0}, {-2, 1, -2}, {1, -2, 1}}

执行计算得到的结果如下.

fb12e45e480bb335a52b3fe06745b85e.png

例4 矩阵的奇异值SVD-分解.

参考输入表达式为

svd decomposition {{1, -2, 0}, {-2, 3, -2}, {0, -2, 1}}

执行计算得到的结果如下.

049964b61797fe7a81cbc3b1197c78d5.png

例5 矩阵舒尔schur分解,将一个矩阵分解成酉矩阵和上三角矩阵.

参考输入表达式为

schur decomposition {{3, -2, 3}, {-2, 3, -2}, {4, -2, 1}}

执行计算得到的结果如下.

08e1d178588391d0822bfd17dbd2c915.png

【注】从输入的表达式可以看到,直接输入相应的分解名称就可以直接得到相应的分解描述及结果.

在线计算专题推荐阅读:
  • 专题(01):大学数学中常用的初等数学计算实现方法

  • 专题(02):数列、一元、多元函数极限的计算与连续性判定

  • 专题(03):具体、抽象函数、隐函数、参数方程求导与方向导数计算

  • 专题(04):函数单调性判定、极值点、拐点、驻点、鞍点、极值与最值的计算

  • 专题(05):常微分方程、差分方程(递推数列)(组)通解、特解的计算

  • 专题(06):绘制函数、方程与不等式描述的平面、空间图形

  • 专题(07):不定积分、定积分与重积分、曲线、曲面积分的计算

  • 专题(08):泰勒公式、常值级数、幂级数与傅里叶级数求和与展开

  • 专题(09):向量的基本属性与各类常见运算及几何应用

  • 专题(10):线性代数行列式、矩阵的基本运算与性质的判定
  • 专题(11):线性代数中线性方程组的解的存在性与向量空间相关问题的求解

微信公众号:考研竞赛数学(ID: xwmath)大学数学公共基础课程分享交流平台!支持咱号请点赞分享!

a7eeb4ef5f595c1e42f9efe50f6ff371.png

↓↓↓查看更多相关内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值