1.6 速度
1.6.1 描述物体位置变化快慢的物理量
刘翔、博尔特等世界运动名将,他们在田径赛场上都取得过辉煌的成绩。在他们夺冠的比赛中,他们总能用比别人更少的时间完成相同的路程。我们也常说,他们跑得“快”。那“快”与“慢”究竟包含什么物理含义呢? 我们从位移开始说起。位移表示这个过程中位置的变化量。在跑步比赛中(以直线跑步比赛来理解),我们比较的是物体发生相同大小位移时所用时间的长短;而在有些时候,我们又会比较在相同时间内物体发生的位移大小。这二者都很好比较,因为其中一个物理量相同。但当二者都不相同时,如何比较呢?这就要将其中一个物理量转化为相同的了。一般来说,我们习惯以单位时间内物体发生位移的大小来判断物体运动的快慢,即转化为相同时间。它的大小计算方法为,即物体的位移与发生这个位移所用的时间的比值,我们称之为速度(velocity),用表示。速度的定义式为
速度的单位可由位移与时间的单位相除得到,单位是米每秒,符号是m/s或。同样,由于位移是一矢量,而时间是标量,运算得到速度也是一矢量。它的方向与位移同向。
现在来回答我们开始时提出的问题:“快”与“慢”究竟表示什么呢?有了速度的定义,我们可以知道速度这一物理量,描述的是物体位置变化的快慢。在相同时间内,物体位置变化得越快,则它的速度就越大。
最简单的运动是匀速直线运动,它表现为:速度的大小、方向均不发生变化,运动轨迹为一条直线。
在一维运动中,我们通过正负号来表示矢量的方向,正号表示矢量与规定的正方向同向,符号表示反向。 也因为如此,直接比较两个矢量的大小是没有意义的,就如我们不能说3m/s一定比-5m/s快。一般我们比较的是两个矢量的绝对值,不考虑符号所带来的方向问题,5m/s就一定比3m/s快。这一点对其他的矢量物理量也同样适用。
1.6.2 平均速度与瞬时速度
速度定义为物体的位移与发生这个位移所用的时间的比值,也指的是这一段时间内物体的平均速度(average velocity)。物体以该速度在该时间间隔内做匀速直线运动发生的位移与实际情况得到的结果一样。这里涉及到两个概念:平均速度与瞬时速度。瞬时速度(instantaneous velocity)指物体在某一时刻的速度;平均速度则是指一段时间内用一个等效的恒定速度运动得到相同的运动结果,这个等效的速度叫做平均速度。因此,在我们定义速度时,实际上是定义了时间间隔内的平均速度,即
我们用来表示平均速度。(一般情况,我们习惯在一个物理量的上方加一横线来表示平均值)。那如何表示瞬时速度呢?实际上,我们用比值定义的方法很难将瞬时速度表示出来,因为即使再小,也是一段很小的时间间隔,不能精确到一个瞬间。我们只能无限逼近瞬时速度,而不能得到它。采用数学中极限的表达方式,瞬时速度应表示为
在今后的学习中,我们可以用位移对时间的一阶导数来表示速度,这里不做赘述。
匀速直线运动的特殊之处在于:它的平均速度等于任意时刻的瞬时速度,因为匀速直线运动的速度时刻不变。
1.6.3 速度与速率
速度是矢量,而初中阶段我们接触的其实是“速率”(speed)。速率定义式为,式中的为物体在时间内经过的路程。它所定义的是在的时间间隔内物体运动的平均速率。与速度相比,速率没有方向性。瞬时速率在大小上等于该时刻的瞬时速度。在研究瞬时的速度与速率时,因为要使,此时无论是直线运动还是曲线运动,它的轨迹均可以近似看作一小段线段(只有才近似成立),这时瞬时速度大小等于瞬时速率,即

但平均速率的大小不一定等于平均速率。读者可以自己思考,当物体做什么运动时,平均速度的大小等于平均速率。(答案是单向直线运动!)
速率是标量,它能表示速度的大小,但不能显示速度的方向。在具体情境中,要根据描述来确定它所给出的是速度与速率、平均与瞬时中的哪种组合。
1.6.4 位置—时间图象(图象)
图象往往比公式更容易理解。在物理学中,用图象描绘一种物理量与另一种物理量之间的关系往往是一种既简便又直观的方式。从图象中,我们也能获得许多信息。下面我们来介绍运动学中的一种常用的图象:位置—时间图象(图象)。

在如图所示的一个任意的图像中,黑色曲线AB表示物体真实的位移随时间变化的曲线;蓝色直线是连接A、B两点的线段。,。
值得注意的是,图象只能用来描绘直线运动,这是因为图象的纵坐标表示在一个方向上的位置,因此只能表示坐标轴上的正、负两个方向,不能表示曲线运动。同时,物体运动的曲线也不闭合,因为同一时刻物体不能位于两个位置。
根据平均速度的定义式,A、B段的平均速度就可以用线段AB的斜率来表示。如果要求点A时刻的瞬时速度,则需要将B点无限接近A点,当两点重合时,得到的线就是该曲线在A点处的切线(图中红色射线),切线的斜率就是A点的瞬时速度。
根据图象,我们可以较为方便地获得一些物体运动的信息。本节讨论的运动情境都以一维运动为例,即物体只在一个方向上运动。若物体做匀速直线运动,则在图象中每一处的斜率都应相等,图像应呈一倾斜直线。
1.7 加速度
1.7.1 描述速度变化快慢的物理量
小汽车、F1赛车,它们都能达到非常高的速度,二者的极限速度差不多,但是为什么赛车能“一溜烟”地冲出去,而汽车却要加速较长一段时间才能达到与赛车一样的速度呢?再看现在汽车销售策略,一般比较时都会提到一个量:百公里加速时间。这里的时间长短又代表了什么能力,是强还是弱呢?
让我们分析一下:上文提到的两种情况,车的初速度和末速度都相同,区别在于完成速度变化所需的时间不同,时间短的物体速度变化得快,时间长的物体速度变化得慢。注意这里的用词,“快”与“慢”其实也是形容速度的词。因此我们需要引入一个新物理量,来描述速度变化的快慢。类比速度这一物理量的定义,新的物理量的计算方式可以是,我们把这个物理量称为加速度(acceleration),通常用表示,定义为速度的变化量与发生这一变化所用时间的比值,即
单位也可用速度的单位除以时间得到,是米每二次方秒,符号是或。与位移、速度一样,加速度也是矢量,值得注意的是,加速度的方向不与速度方向相同,而是与速度变化量的方向相同,即的方向。
【如何理解加速度的单位?】
加速度的单位为,但如果时间长了同学很难记住加速度的含义。可以这样理解:将加速度的单位拆开,这样的表述更能显示其物理意义,即“每秒速度变化了××米每秒”。这样就能理解,加速度是描述速度变化的快慢的物理量了。
1.7.2 速度—时间图象(图象)
速度—时间图象(图象)是运动学中另一种常用的图象,它拥有比图象更多的信息,使用起来也更方便。

从图象中可以获得如下信息: (1)加速度,根据加速度的定义,物体在一段时间内的平均加速度可以用下式求得:
图中任意两点连接的直线斜率就表示了平均加速度,但这只考虑了物体的初末状态的速度变化,未必代表物体真实的运动,要想描述某一时刻的瞬时加速度,也需要将时间间隔 取得非常小,有
图中任意两点连接的直线斜率就表示了平均加速度,但这只考虑了物体的初末状态的速度变化,未必代表物体真实的运动,要想描述某一时刻的瞬时加速度,也需要将时间间隔取得非常小,有
从图象中看,瞬时加速度对应曲线上任意一点处切线的斜率。
速度是位移对时间的一阶导数,而加速度也可表示为速度对时间的一阶导数,故加速度是位移对时间的二阶导数,这里不做赘述。
(2)位移,匀速直线运动的位移可以用来计算,对应在图象中,恒定,则位移可以用曲线与横纵坐标轴围成的矩形面积来表示。但如果不恒定,此时还可不可以用面积来表示位移呢?实际上是可以的。我们将变速运动近似看成许多段匀速运动的叠加,每一段都以此段位移开始时的速度为此段过程的速度,得到的面积就是类似于条形统计图的每一条的面积之和。但这只是近似的结果,如果将每一段时间间隔逐步变小,得到的位移也就越接近真实的位移,最终当时间间隔取到无穷小时,它所代表的就是物体真实的运动,因此图象的面积也能表示物体做变速运动时的位移。

【想一想】
直线运动时,物体的加速度大于0,物体一定在做加速运动吗?什么情况下,物体做加速运动?