已知长短轴求椭圆上任意一点的坐标_椭圆的三种定义

(建议阅读原文)预备知识 圆锥曲线的极坐标方程

第二种定义
   我们已经知道用焦点和准线如何定义椭圆, 但从椭圆的极坐标公式难以看出椭圆的对称性,这里用相同的定义推导直角坐标的表达式. 我们不妨先以一个焦点为原点定义直角坐标系, 且令

轴指向另一个焦点, 则有

代入椭圆的极坐标方程式 1 得

两边平方并整理得

由此可见,如果我们把椭圆左移
,椭圆将具有

的形式. 其中
半长轴
半短轴.这就是椭圆的第二种定义, 即把单位圆沿两个垂直方向分别均匀拉长
.下面来看系数的关系.首先定义椭圆的焦距为焦点到椭圆中心的距离(即以上左移的距离)为

式 3 和式 4 对比系数得

以上两式可以将椭圆的极坐标方程转为直角坐标方程. 另外易证

若要从直角坐标方程变回极坐标方程, 将式 5 式 6 逆转得
第三种定义
   椭圆的第三种定义是, 椭圆上任意一点到两焦点的距离之和等于
. 现在我们来证明前两种定义下的椭圆满足这个条件. 由直角坐标方程可知对称性,可在椭圆的两边做两条准线,令椭圆上任意一点到两焦点的距离分别为
,到两准线的距离分别为
,则有

所以

证毕.
可以使用Matlab中的`ellipse`函数进行绘制椭圆,然后根据椭圆的参数计算出椭圆方程。假设椭圆的圆心坐标为$(x_0,y_0)$,长轴长度为$a$,长度为$b$,倾角为$\theta$,则椭圆的标准方程可以表示为: $$\frac{(x-x_0)^2}{a^2}\cos^2\theta + \frac{(x-x_0)(y-y_0)}{ab}\sin 2\theta + \frac{(y-y_0)^2}{b^2}\sin^2\theta = 1$$ 如果需要将其转换为一般式,则可以进行如下步骤: 1. 将椭圆方程中的 $\sin 2\theta$ 项变为 $2\sin\theta\cos\theta$。 2. 使用三角恒等式 $\sin^2\theta + \cos^2\theta = 1$,将 $\cos^2\theta$ 和 $\sin^2\theta$ 表示为 $k$ 和 $1-k$,则: $$\frac{(x-x_0)^2}{a^2}k + \frac{(x-x_0)(y-y_0)}{ab}\sin 2\theta + \frac{(y-y_0)^2}{b^2}(1-k) = 1$$ 3. 将 $k$ 和 $1-k$ 分别乘到 $x$ 和 $y$ 上,得到: $$(\frac{x-x_0}{a\sqrt{k}})^2 + 2\frac{(x-x_0)(y-y_0)}{ab}\frac{\sin\theta\cos\theta}{\sqrt{k(1-k)}} + (\frac{y-y_0}{b\sqrt{1-k}})^2 = 1$$ 4. 将 $\frac{\sin\theta\cos\theta}{\sqrt{k(1-k)}}$ 表示为 $\pm\frac{1}{2}\tan 2\theta$,则: $$(\frac{x-x_0}{a\sqrt{k}})^2 + (\frac{y-y_0}{b\sqrt{1-k}})^2 \pm \frac{(x-x_0)(y-y_0)}{ab}\tan 2\theta = 1$$ 因此,可以使用以下代码计算出椭圆的方程: ```matlab % 椭圆参数 x0 = 0; % 圆心横坐标 y0 = 0; % 圆心纵坐标 a = 2; % 长轴长度 b = 1; % 长度 theta = pi/4; % 倾角 % 计算椭圆方程 k = cos(theta)^2; eqn = @(x,y) ((x-x0).^2./(a^2*k) + (y-y0).^2./(b^2*(1-k)) ... + (x-x0).*(y-y0)./(a*b)*tan(2*theta)).^2 - 1; % 绘制椭圆 fimplicit(eqn,[-3,3,-2,2]) ``` 其中,`fimplicit` 函数用于绘制椭圆,`eqn` 函数表示椭圆方程。在计算方程时,需要注意三角函数的输入是弧度制,所以需要将倾角转换为弧度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值