根据角度,求椭圆边上点的坐标

只考虑焦点在坐标轴,质点在圆心的情况

#include <math.h>
#include <iostream>
#include <utility>

inline float degrees_to_radians(float deg) {
    return deg / 180.0 * M_PI;
}

inline float radians_to_degrees(float rad) {
    return rad / M_PI * 180.0;
}
// 计算离心角
inline float eccentric_angle(float a, float b, float rad) {
    return atan2(a*sin(rad), b*cos(rad));
}

std::pair<float, float> getEllipseXY(float a, float b, float degree) {
    auto rad = degrees_to_radians(degree);
    auto ecc_angle = eccentric_angle(a, b, rad);
    auto x = a * cos(ecc_angle);
    auto y = b * sin(ecc_angle);
    return {x, y};
}

int main() {
    std::pair<float, float> xy;
    for (int deg = 0; deg <= 480; deg += 90) {
        xy = getEllipseXY(10, 5, deg);
        std::cout << "degree = " << deg << ": x, y = "<< xy.first << " " << xy.second << std::endl;
    }
    return 0;
}

 

### 使用Hough变换实现椭圆检测 #### 参数空间维度简化 传统Hough变换方法在处理椭圆时确实面临参数空间过大的问题,因为确定一个椭圆需要五个参数:两个半轴长度 \( a \) 和 \( b \),中心坐标 \( (P, Q) \),以及旋转角度 \( θ \)[^1]。为了降低计算复杂度并提高效率,研究者们开发了多种改进方案。 #### 改进策略概述 一种常见的优化方式是在预处理阶段利用边缘信息减少候选区域数量,并采用分步投票机制逐步逼近最优解。具体来说: - **初始筛选**:先通过Canny算子或其他边缘检测技术获取二值化后的边界图; - **局部特征提取**:针对每条边上的像素,在其邻域内寻找可能属于同一椭圆弧段的其他; - **累积器构建**:对于满足条件的对组合,更新对应的四维或更低维度的参数累加表; #### MATLAB 实现示例 下面给出一段MATLAB代码片段来展示上述思路的应用: ```matlab % 加载测试图片并转换成灰度图像 I = imread('ellipse_test.png'); BW = edge(rgb2gray(I), 'canny'); % 定义搜索范围和分辨率 a_range = linspace(min_a,max_a,n_steps); b_range = linspace(min_b,max_b,n_steps); theta_range = linspace(-pi/2, pi/2, n_angles); % 初始化计数矩阵 accumulator = zeros(length(a_range)*length(b_range)*n_angles,size(BW)); for y=1:size(BW,1) for x=1:size(BW,2) if BW(y,x)==true % 只考虑边缘 for i=1:length(theta_range) theta = theta_range(i); % 计算当前方向下的潜在椭圆中心位置 [centers_x, centers_y] = find_centers(x,y,a_range,b_range,theta); for j=1:numel(centers_x) idx = sub2ind([numel(a_range), numel(b_range), length(theta_range)], ... round((find(abs(a_range-a)<tolerance)+1)/step_size),... round((find(abs(b_range-b)<tolerance)+1)/step_size),i); accumulator(idx, y, x)=accumulator(idx, y, x)+1; end end end end end % 查找最大响应的位置作为最终估计结果 [max_val,idx]=max(reshape(sum(sum(accumulator)),[],1)); [a_estimated, b_estimated, theta_estimated] = ind2sub(size(accumulator),idx); ``` 此段程序展示了如何遍历所有符合条件的及其周围环境以填充多维数组形式的`accumulator`变量。最后一步是从这个累加结构中挑选出得分最高的单元格对应的实际几何属性值。 #### OpenCV Python 实现提示 虽然OpenCV库本身并不直接提供完整的椭圆霍夫变换功能,但是可以借助Python接口调用自定义核函数完成相似的任务。这里仅列出部分关键语句供参考: ```python import cv2 import numpy as np # ...省略加载与预处理... edges = cv2.Canny(gray_image, threshold1, threshold2) hough_ellipses = [] rho_reso = 1 theta_reso = np.pi / 180 threshold = 50 min_theta = 0 * np.pi / 180 max_theta = 90 * np.pi / 180 lines = cv2.HoughLines(edges, rho_reso, theta_reso, threshold, min_theta=min_theta, max_theta=max_theta) if lines is not None: for line in lines: rho, theta = line[0] # 进一步处理得到疑似椭圆的信息 hough_ellipses.append((center, axes_length, angle)) ``` 请注意这只是一个框架性的指导,实际操作还需要根据具体情况调整参数设置并补充必要的逻辑判断环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值