我们已经知道,二元函数对某个自变量的偏导数表示当其中一个自变量固定时,因变量对另一个自变量的变化率.在实际问题中,有时需要研究多元函数中各个自变量都取得增量时因变量所获得的增量,即所谓全增量的问题.
一般来说,计算全增量比较复杂.与一元函数的情形类似,我们也希望利用关于自变量增量的线性函数来近似地代替函数的全增量,由此引入关于二元函数全微分的定义.
由此看出,偏导数存在是二元函数可微的必要条件,而不是充分条件.在什么样的情况下,偏导数存在,二元函数才可微呢?下面的定理回答了这个问题.
此定理告诉了我们,二元函数的两个偏导数在该点连续的话,就能保证其可微.
习惯上,我们把自变量的改变量分别记作
所以二元函数的全微分可以表示为 :
提问:1.什么是全增量,什么是全微分,它们的关系是什么?
2.计算全微分的公式是什么?
3.全微分计算的关键是什么?