二元函数可微与偏导数_多元函数全微分

     我们已经知道,二元函数对某个自变量的偏导数表示当其中一个自变量固定时,因变量对另一个自变量的变化率.在实际问题中,有时需要研究多元函数中各个自变量都取得增量时因变量所获得的增量,即所谓全增量的问题. 

465677dd77e53978c63173aa732d164d.png

      一般来说,计算全增量比较复杂.与一元函数的情形类似,我们也希望利用关于自变量增量的线性函数来近似地代替函数的全增量,由此引入关于二元函数全微分的定义.

40dadeaed05064af1842c1f529bdcbb6.png

 由此看出,偏导数存在是二元函数可微的必要条件,而不是充分条件.在什么样的情况下,偏导数存在,二元函数才可微呢?下面的定理回答了这个问题.

07b3ecd62e5f1579f4848f60ffd61475.png

   此定理告诉了我们,二元函数的两个偏导数在该点连续的话,就能保证其可微.

习惯上,我们把自变量的改变量分别记作

732af5df4e54a9e657ac35a4e9553f92.png

所以二元函数的全微分可以表示为  :

72877b9e20e3e678e7dee671d496ebcb.png

提问:1.什么是全增量,什么是全微分,它们的关系是什么?

          2.计算全微分的公式是什么?

          3.全微分计算的关键是什么?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值