复合函数求导
课
题
复合函数求导法则
课型:新授
课
主备教师:
刘
素梅
总课时:
第
课时
学习目标
1
、牢记基本初等函数求导公式
2
、会利用基本初等函数求导公式求函数的导数
3
、能正确分解简单的复合函数,记住复合函数的求导公式
4
、会求简单的形如
f
ax
b
的复合函数的导数
教学重难点
重点
会分解简单的复合函数及会求导
难点
正确分解复合函数的复合过程
一.创设情景
复习
:求下列函数的导数
(
1
)
3
2
4
y
x
x
(
3
)
s
in
x
y
x
(
2
)
3
c
o
s
4
s
i
n
y
x
x
(
4
)
2
2
3
y
x
(
5
)
l
n
2
y
x
设置情境:
(
4
)利用基本初等函数求导公式如何求导
?(5)
能用学过的公式求导吗
?
二.新课讲授
探究
1
、
探究函数
l
n
2
y
x
的结构特点
探究
:
指出下列函数的复合关系
复合函数的概念
一般地,对于两个函数
(
)
y
f
u
和
(
)
u
g
x
,如果通过变
量
u
,
y
可以表示成
x
的函数,那么称这个函数为函数
(
)
y
f
u
和
(
)
u
g
x
的
复合函数,
记作
(
)
y
f
g
x
。
复合函数的导数
复合函数
(
)
y
f
g
x
的导数和函数
(
)
y
f
u
和
(
)
u
g
x
的
导数间的关系为
x
u
x
y
y
u
,即
y
对
x
的导数等于
y
对
u
的导数与
u
对
x
的导
数的乘积.
若
(
)
y
f
g
x
,则
()
()
()
y
f
g
x
f
g
x
g
x
三.典例分析
例
1
(课本例
4
)
求下列函数的导数:
(
1
)
2
(
2
3
)
y
x
;
(
2
)
0
.
0
5
1
x
y
e
;
(
3
)
s
i
n
(
)
y
x
(其中
,
均为常数)
.
备课札记
1
1
)
(
)
2
)
s
i
n
(
)
n
m
y
a
b
x
y
x
x