复合函数求导经典例题_复合函数求导解析及练习

本课程详细讲解复合函数求导法则,包括基本初等函数的导数公式、复合函数的分解与求导方法。重点是正确分解复合函数并求导,难点在于理解复合过程。课程通过实例分析,如求导数 (1) y = x^2 - 3, (2) y = 3cos(4sinx), 等,帮助学生掌握求导技巧,特别是如何处理形如 y = f(ax + b) 的复合函数。" 111718947,10326281,HTML5 Canvas详解与示例:绘制、形状与动画,"['前端开发', 'HTML5', 'Canvas']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

复合函数求导

复合函数求导法则

课型:新授

主备教师:

素梅

总课时:

课时

学习目标

1

、牢记基本初等函数求导公式

2

、会利用基本初等函数求导公式求函数的导数

3

、能正确分解简单的复合函数,记住复合函数的求导公式

4

、会求简单的形如

f

ax

b

的复合函数的导数

教学重难点

重点

会分解简单的复合函数及会求导

难点

正确分解复合函数的复合过程

一.创设情景

复习

:求下列函数的导数

(

1

)

3

2

4

y

x

x

(

3

)

s

in

x

y

x

(

2

)

3

c

o

s

4

s

i

n

y

x

x

(

4

)

2

2

3

y

x

(

5

)

l

n

2

y

x

设置情境:

(

4

)利用基本初等函数求导公式如何求导

?(5)

能用学过的公式求导吗

?

二.新课讲授

探究

1

探究函数

l

n

2

y

x

的结构特点

探究

:

指出下列函数的复合关系

复合函数的概念

一般地,对于两个函数

(

)

y

f

u

(

)

u

g

x

,如果通过变

u

y

可以表示成

x

的函数,那么称这个函数为函数

(

)

y

f

u

(

)

u

g

x

复合函数,

记作

(

)

y

f

g

x

复合函数的导数

复合函数

(

)

y

f

g

x

的导数和函数

(

)

y

f

u

(

)

u

g

x

导数间的关系为

x

u

x

y

y

u

,即

y

x

的导数等于

y

u

的导数与

u

x

的导

数的乘积.

(

)

y

f

g

x

,则

()

()

()

y

f

g

x

f

g

x

g

x

三.典例分析

1

(课本例

4

)

求下列函数的导数:

(

1

)

2

(

2

3

)

y

x

(

2

)

0

.

0

5

1

x

y

e

(

3

)

s

i

n

(

)

y

x

(其中

,

均为常数)

备课札记

1

1

)

(

)

2

)

s

i

n

(

)

n

m

y

a

b

x

y

x

x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值