10:导数的复合函数,幂函数求导

1.复合函数的求导(由外到内)

[ f ( △ ) ] ′ = f ′ ( △ ) ⋅ △ [f(△)]^′ = f^′(△)·△ [f()]=f()

例1:f(x)=sin2x,求 f ′ ( x ) 的导数 f^′(x)的导数 f(x)的导数
解: f ′ ( x ) = c o s 2 x ⋅ 2 = 2 ⋅ c o s 2 x f^′(x)=cos2x·2=2·cos2x f(x)=cos2x2=2cos2x

记住下面这个公式
ln ⁡ ( x + x 2 + 1 ) ′ = 1 x 2 + 1 \ln (x+\sqrt {x^2+1})^′= \frac{1}{\sqrt {x^2+1}} ln(x+x2+1 )=x2+1 1

1.幂指函数的求导

什么叫幂指函数:
上面和下面都有关于x的自变量
f(x)= u ( x ) v ( x ) = = = > ( u v ) u(x)^{v(x)} ===>(u^v) u(x)v(x)===>(uv)

例: s i n x x sin x^{x} sinxx就是幂指函数

求导步骤:
①变形: △ = e l n △ = = = > u v = e l n u v = e v ⋅ l n u △=e^{ln △} ===>u^v=e^{ln u^{v}}=e^{v·ln u} =eln===>uv=elnuv=evlnu

( e v ⋅ ln ⁡ u ) ′ = e v ⋅ ln ⁡ u ⋅ ( v ⋅ ln ⁡ u ) ′ = e v ⋅ ln ⁡ u ⋅ ( v ′ ⋅ ln ⁡ u + v ⋅ u ′ u ) = u v ( v ′ ⋅ ln ⁡ u + v ⋅ u ′ u ) (e^{v·\ln u})^′=e^{v·\ln u}·(v·\ln u)^′=e^{v·\ln u}·(v^′·\ln u+v· \frac{u^′}{u})=u^v(v^′·\ln u+v· \frac{u^′}{u}) (evlnu)=evlnu(vlnu)=evlnu(vlnu+vuu)=uv(vlnu+vuu) ,这里u是复合函数

例: y = x x y=x^x y=xx的导数。
解: y ′ = x x ( ln ⁡ x + 1 ) y^′=x^x(\ln x+1) y=xx(lnx+1)

3对数求导法

ln ⁡ x ⋅ y = ln ⁡ x + ln ⁡ y \ln x·y=\ln x+\ln y lnxy=lnx+lny
ln ⁡ x y = ln ⁡ x − ln ⁡ y \ln \frac{x}{y}=\ln x-\ln y lnyx=lnxlny
ln ⁡ x y = y ⋅ ln ⁡ x \ln x^y=y·\ln x lnxy=ylnx

例:
在这里插入图片描述
例2:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值