复合函数定义h(x)=f(g(x))
首先给出其求导公式h'(x)=f'(g(x))g'(x)
看着是不是很懵,先别管跟我步骤走~~~
你必须得知道拆分复合函数
拿一个最简单的复合函数,h(x)=e^2x,你知道指数函数是e^x,很显然 f(t)=e^t,而 t=g(x)=2x,把g(x)带入f(t)=f(g(x))=e^2x=h(x)。简单来说,拆分复合函数就是把复杂的函数拆分成你知道的基本初等函数,通过中间变量t关联。
再来一个 h(x)=ln(1+x^2+e^2x) 你先自己试试拆分
很明显初等函数有ln(t) , 那么f(t)=ln(t),t=g(x)=1+x^2+e^2x 。你是不是想问为什么不拆e^2x,因为e^2x在1+x^2+e^2x是一个整体,都是关于x的变化量。这个整体可以直接运用导数的四则运算求导,不需要拆分。
会拆分后我们再看求导公式
h'(x)=f'(g(x))g'(x)
第一个例子 h(x)=e^2x f(t)=e^t,而 t=g(x)=2x,h'(x)=f'(t)*t'=e^t*2=2e^t=2e^2x
第二个例子 h(x)=ln(1+x^2+e^2x) f(t)=ln(t),而t=g(x)=1+x^2+e^2x,
h'(x)=f'(t)*t'=1/t*(2x+2e^2x)=(2x+2e^2x)/(1+x^2+e^2x)
是不是简简单单~~