复合函数求导你还不会?

复合函数定义h(x)=f(g(x))

首先给出其求导公式h'(x)=f'(g(x))g'(x)

看着是不是很懵,先别管跟我步骤走~~~

你必须得知道拆分复合函数

拿一个最简单的复合函数,h(x)=e^2x,你知道指数函数是e^x,很显然 f(t)=e^t,而 t=g(x)=2x,把g(x)带入f(t)=f(g(x))=e^2x=h(x)。简单来说,拆分复合函数就是把复杂的函数拆分成你知道的基本初等函数,通过中间变量t关联。

再来一个 h(x)=ln(1+x^2+e^2x) 你先自己试试拆分

很明显初等函数有ln(t) , 那么f(t)=ln(t),t=g(x)=1+x^2+e^2x 。你是不是想问为什么不拆e^2x,因为e^2x在1+x^2+e^2x是一个整体,都是关于x的变化量。这个整体可以直接运用导数的四则运算求导,不需要拆分。

会拆分后我们再看求导公式

h'(x)=f'(g(x))g'(x)

第一个例子 h(x)=e^2x  f(t)=e^t,而 t=g(x)=2x,h'(x)=f'(t)*t'=e^t*2=2e^t=2e^2x

第二个例子 h(x)=ln(1+x^2+e^2x) f(t)=ln(t),而t=g(x)=1+x^2+e^2x,

h'(x)=f'(t)*t'=1/t*(2x+2e^2x)=(2x+2e^2x)/(1+x^2+e^2x)

是不是简简单单~~

李雅普诺夫复合函数求导是使用链式法则来计算的。链式法则的思想是当一个函数由复合函数表示时,可以用构成复合函数的各个函数的导数乘积来表示导数。具体来说,如果函数f(x)由函数g(u)和函数h(x)的复合函数表示,即f(x) = g(h(x)),那么f(x)对x的导数可以计算为g'(h(x)) * h'(x)。其中,g'(u)和h'(x)分别是函数g(u)和h(x)对其自变量的导数。根据链式法则,我们可以将复合函数的导数分解为各个函数导数的乘积。 在涉及到数组的导数求解时,我们需要将矩阵计算分解为单个标量的计算。这是因为在有丰富的求导经验之前,同时执行多个复杂操作很容易出错。因此,我们可以将矩阵的每个元素视为一个标量,然后使用链式法则来计算每个元素对自变量的导数。 总结来说,李雅普诺夫复合函数求导使用链式法则来计算,将复合函数的导数分解为各个函数导数的乘积,并将矩阵计算分解为单个标量的计算来求解导数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【知识相关】让向量、矩阵和张量的求导更简洁些吧](https://blog.csdn.net/qq_41742361/article/details/108092020)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [让向量、矩阵和张量的求导更简洁些吧](https://blog.csdn.net/qq_41742361/article/details/108091364)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值