origin图上显示数据标签_数据分析| Origin 也能做主成分分析?

本文介绍了如何使用Origin软件进行主成分分析(PCA)并绘制散点图。首先,详细阐述了数据准备过程,包括数据转置和添加分组信息。接着,通过Origin的PCA插件演示了分析步骤,选择2D散点图展示,并展示了如何个性化调整图表,如显示数据标签。最后,提到了Origin Apps的安装方法和PCA插件的获取途径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

b893d1fac16f844e09405ffb9571e937.png

|撰文:莫北

最早了解到主成分分析(Principal Component Analysis,PCA)是在一位师兄的毕业答辩上,当时听得是云里雾里,一头雾水。

其实,主成分分析是因子分析的一种常用方法,主要目的是为了减少变量数目,也就是降维

在高通量测序中,主要基于基因表达量、种群丰度等进行样本的聚类,下图是一篇客户文章的基于表达量的PCA结果。

8dfd84ad5f193ffb5de069ad13d67109.png
Plant biotechnology journal, 2018

那么该如何进行主成分分析呢?

今天为大家介绍如何用Origin进行分析并完成散点图的绘制。

数据准备

本文所用的数据是OmicShare PCA分析工具的示例文件(如下图),大家可随意下载练习(http://www.omicshare.com/tools/Home/Soft/pca)。

d8e7ba61983c5c6ed3c8f90ef891f63b.png

示例为6个样本的1300多个基因的表达量数据,接下来需要做得是把每个样本的对应的1300多个数据用2个数据表示,降到2维后,就可用二维的散点图展示。

这里每个基因的名称视作1个变量,因此需要对数据进行手动转置,为了分组着色,在前面加1列分组数据,如下图(Sheet1 →Sheet3)。然后打开Origin,将数据粘贴到Origin的表格中。

43ba17b70b2ea3687c2ace49c647eb5a.gif

分析作图

点窗口右侧的Apps,在弹出的窗口中点今天要用的PCA插件。

81e1c033fd78e5e8ec6115d2ee14fdc2.png

然后选择输入数据(Input data),具体方法如下图,注意这里的数据添加小技巧

e14222dfe33553238a6557060f40ac55.gif

在绘图设置中这里选2D的散点图,如下图,当然你也可以选3D的散点图(使用3个主成分),点OK 即可完成分析和作图。

如果样本较多,也可以选择显示置信区间椭圆(Show Confidence Ellipse)

105b2cdb256e35ca6b4a7d0d8425cfcb.png

双击Score Plot中的图表,放大散点图,然后就可以对图表进行个性化调整,比如改变标记的形状、颜色、大小,显示数据标签等。

2c1bd22c927638f8d75e515f90c7008e.gif

最终的的效果如下:

006cb2eea9d3d2bf716491b6f803c6f0.png

安装

Origin的强大之处在于具有很多官方的拓展工具(Apps),安装方法与之前介绍的Google Map Import、Heat Map Dendrogram等一样,只要将.opx的文件拖拽到打开的Origin界面即可完成安装,注意最好安装Origin 2017之后的版本。

本文用到的PCAC插件和示例数据已经上传到论坛,点击这里可以下载。感兴趣的同学可以去试试~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值